Tracking viral genomes in host cells at single-molecule resolution.

Cell Host Microbe

Institute of Molecular Life Sciences, University of Zürich, CH-8057 Zurich, Switzerland; Molecular Life Sciences Graduate School, ETH and University of Zürich, CH-8057 Zurich, Switzerland.

Published: October 2013

Viral DNA trafficking in cells has large impacts on physiology and disease development. Current methods lack the resolution and accuracy to visualize and quantify viral DNA trafficking at single-molecule resolution. We developed a noninvasive protocol for accurate quantification of viral DNA-genome (vDNA) trafficking in single cells. Ethynyl-modified nucleosides were used to metabolically label newly synthesized adenovirus, herpes virus, and vaccinia virus vDNA, without affecting infectivity. Superresolution microscopy and copper(I)-catalyzed azide-alkyne cycloaddition (click) reactions allowed visualization of infection at single vDNA resolution within mammalian cells. Analysis of adenovirus infection revealed that a large pool of capsid-free vDNA accumulated in the cytosol upon virus uncoating, indicating that nuclear import of incoming vDNA is a bottleneck. The method described here is applicable for the entire replication cycle of DNA viruses and offers opportunities to localize cellular and viral effector machineries on newly replicated viral DNA, or innate immune sensors on cytoplasmic viral DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2013.09.004DOI Listing

Publication Analysis

Top Keywords

viral dna
16
single-molecule resolution
8
dna trafficking
8
viral
6
dna
5
vdna
5
tracking viral
4
viral genomes
4
genomes host
4
cells
4

Similar Publications

Background And Objectives: Screening of rural women of Assam by careHPV test for high-risk HPV (hr-HPV) DNA and Papanicolaou (PAP) test for abnormal cytology.

Method: This prospective cross-sectional study included 480 non-pregnant women participants aged 20-70 years from Kamrup District, Assam. Two cervical scrap samples were obtained from eligible enrolled women.

View Article and Find Full Text PDF

Exploring the druggability of the UEV domain of human TSG101 in search for broad-spectrum antivirals.

Protein Sci

January 2025

Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain.

The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics.

View Article and Find Full Text PDF

Despite advancements in antiretroviral therapy (ART) that reduces the viral load to undetectable levels and improve CD4 T cell counts, viral eradication has not been achieved due to HIV-1 persistence in resting CD4 T-cells. We, therefore, characterized the gene, which is essential for HIV-1 replication and pathogenesis, from 20 virologically controlled aging individuals with HIV (HIV) on long-term ART and improved CD4 T-cell counts, with a particular focus on older individuals. Peripheral blood mononuclear cell genomic DNA from HIV were used to amplify gene by polymerase chain reaction followed by nucleotide sequencing and analysis.

View Article and Find Full Text PDF

High Shear Stress Reduces ERG Causing Endothelial-Mesenchymal Transition and Pulmonary Arterial Hypertension.

Arterioscler Thromb Vasc Biol

December 2024

Department of Pediatrics (T.S., J.-R.M., Y.H.C., J.M.S., J. Kaplan, A.C., L.W., D.G., S.T., S.I., M.D., W.Y., A.L.M., M.R.).

Background: Computational modeling indicated that pathological high shear stress (HSS; 100 dyn/cm) is generated in pulmonary arteries (PAs; 100-500 µm) in congenital heart defects causing PA hypertension (PAH) and in idiopathic PAH with occlusive vascular remodeling. Endothelial-to-mesenchymal transition (EndMT) is a feature of PAH. We hypothesize that HSS induces EndMT, contributing to the initiation and progression of PAH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!