Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2).

Chemosphere

King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia. Electronic address:

Published: November 2013

Increasing use of nickel oxide nanoparticles (NiO NPs) necessitates an improved understanding of their potential impact on human health. Previously, toxic effects of NiO NPs have been investigated, mainly on airway cells. However, information on effect of NiO NPs on human liver cells is largely lacking. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and induction of apoptotic response in human liver cells (HepG2) due to NiO NPs exposure. Prepared NiO NPs were crystalline and spherical shaped with an average diameter of 44 nm. NiO NPs induced cytotoxicity (cell death) and ROS generation in HepG2 cells in dose-dependent manner. Further, ROS scavenger vitamin C reduced cell death drastically caused by NiO NPs exposure indicating that oxidative stress plays an important role in NiO NPs toxicity. Micronuclei induction, chromatin condensation and DNA damage in HepG2 cells treated with NiO NPs suggest that NiO NPs induced cell death via apoptotic pathway. Quantitative real-time PCR analysis showed that following the exposure of HepG2 cells to NiO NPs, the expression level of mRNA of apoptotic genes (bax and caspase-3) were up-regulated whereas the expression level of anti-apoptotic gene bcl-2 was down-regulated. Moreover, activity of caspase-3 enzyme was also higher in NiO NPs treated cells. To the best of our knowledge this is the first report demonstrating that NiO NPs caused cytotoxicity via ROS and induced apoptosis in HepG2 cells, which is likely to be mediated through bax/bcl-2 pathway. This work warrants careful assessment of Ni NPs before their commercial and industrial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2013.09.047DOI Listing

Publication Analysis

Top Keywords

nio nps
52
hepg2 cells
16
nps
14
nio
13
human liver
12
liver cells
12
cell death
12
cells
9
nickel oxide
8
oxide nanoparticles
8

Similar Publications

Herein, we report the biosynthesis of pure NiO and NiO nanoparticles doped with Silver (Ag@NiO NPs) 2, 4, 6, and 8 mol% from aloe vera extract by solution combustion method at 400 °C and calcined at 500 °C for 3 h. By utilizing silver-doped NiO nanoparticles synthesized with Aloe Vera latex, which not only enhances the material's properties but also promotes environmentally friendly fabrication methods. The morphological, structural elemental compositions were analysed through SEM, HRTEM, SAED, XRD and EDAX.

View Article and Find Full Text PDF

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

Currently, the increasing use of nickel metal-organic frameworks (Ni-MOF) and nickel oxide nanoparticles (NiO NPs) has raised concerns regarding their potential environmental impact on wastewater treatment systems. Herein, the responses of aerobic granular sludge (AGS) and algal-bacterial aerobic granular sludge (AB-AGS) to Ni-MOF and NiO NPs were investigated. The results showed that Ni-MOF concentrations of 50, 100, and 200 mg/L significantly reduced nutrient removal in both systems, particularly affecting ammonia, nitrite, and phosphorus removal, while denitrification processes remained stable.

View Article and Find Full Text PDF

High-Performance InP Quantum-Dot Light-Emitting Diodes with a NiO Nanoparticle-Embedded Hybrid Emissive Layer.

ACS Appl Mater Interfaces

January 2025

Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and SOFT Foundry Institute, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

Quantum-dot (QD) light-emitting diodes (QLEDs) are garnering significant attention owing to their superb optoelectrical properties, but the overinjection of electrons compared to holes into the emissive layer (EML) is still a critical obstacle to be resolved. Current approaches, such as inserting a charge-balancing interlayer and mixing p-type organic additives into the EML, face issues of process complexity and poor miscibility. In this work, we demonstrate efficient InP QLEDs by simply embedding NiO nanoparticles (NPs) into the EML which forms a homogeneous QD-metal oxide hybrid EML.

View Article and Find Full Text PDF

Melatonin mitigates nickel oxide nanoparticles induced phytotoxicity in soybean by reducing metal accumulation, enhancing antioxidant defense and promoting nitrogen assimilation.

J Hazard Mater

December 2024

Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, China. Electronic address:

Heavy metals like nickel (Ni) from anthropogenic activities damage plant growth, posing challenges to agriculture. Melatonin (ME), a potent bio-regulator, has shown promise in alleviating stress induced by heavy metals. However, the mechanisms through which ME alleviates NiO-NPs phytotoxicity remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!