The processing of sensory information varies widely across behavioral states. However, little is known about how behavioral states modulate the intracellular activity of cortical neurons to effect changes in sensory responses. Here, we performed whole-cell recordings from neurons in upper-layer primary visual cortex of awake mice during locomotion and quiet wakefulness. We found that the signal-to-noise ratio for sensory responses was improved during locomotion by two mechanisms: (1) a decrease in membrane potential variability leading to a reduction in background firing rates and (2) an enhancement in the amplitude and reliability of visually evoked subthreshold responses mediated by an increase in total conductance and a depolarization of the stimulus-evoked reversal potential. Consistent with the enhanced signal-to-noise ratio for visual responses during locomotion, we demonstrate that performance is improved in a visual detection task during this behavioral state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806653PMC
http://dx.doi.org/10.1016/j.neuron.2013.08.007DOI Listing

Publication Analysis

Top Keywords

visual responses
8
behavioral states
8
sensory responses
8
signal-to-noise ratio
8
responses
5
subthreshold mechanisms
4
mechanisms underlying
4
underlying state-dependent
4
state-dependent modulation
4
visual
4

Similar Publications

Background: Recreational screen time (RST) has been found to be associated with cognitive decline and neurodegenerative diseases. However, the association between RST and age-related macular degeneration (AMD), an ocular neurodegenerative disease, is still unclear. We aimed to elucidate the association between RST and AMD.

View Article and Find Full Text PDF

Hearing in categories and speech perception at the "cocktail party".

PLoS One

January 2025

School of Communication Sciences & Disorders, University of Memphis, Memphis, Tennessee, United States of America.

We aimed to test whether hearing speech in phonetic categories (as opposed to a continuous/gradient fashion) affords benefits to "cocktail party" speech perception. We measured speech perception performance (recognition, localization, and source monitoring) in a simulated 3D cocktail party environment. We manipulated task difficulty by varying the number of additional maskers presented at other spatial locations in the horizontal soundfield (1-4 talkers) and via forward vs.

View Article and Find Full Text PDF
Article Synopsis
  • Food is a multisensory experience, relying on visuals, taste, smell, and, surprisingly, texture to assess nutritional value and safety.
  • Despite being overlooked, texture offers crucial information about food's physical properties, like hardness and liquidity.
  • Recent findings show that some sensory neurons are not limited to specific stimuli; instead, they can respond broadly, indicating greater sensory complexity than previously thought.
View Article and Find Full Text PDF

DSCI: a database of synthetic biology components for innate immunity and cell engineering decision-making processes.

Adv Biotechnol (Singap)

September 2024

MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.

Although significant progress of clinical strategy has been made in gene editing and cell engineering in immunotherapy, it is now apparent that design and modification in terms of complex signaling pathways and motifs on medical synthetic biology are still full of challenges. Innate immunity, the first line of host defense against pathogens, is critical for anti-pathogens immune response as well as regulating durable and protective T cell-mediated anti-tumor responses. Here, we introduce DSCI (Database of Synthetic Biology Components for Innate Immunity, https://dsci.

View Article and Find Full Text PDF

Context: To address the severe fuel crisis and environmental pollution, the use of lightweight metal materials, such as AZ alloy, represents an optimal solution. This study investigates the mechanical behavior and deformation mechanism of AZ alloys under uniaxial compressive using molecular dynamics (MD) simulations. The influence of various compositions, grain sizes (GSs), and temperatures on the compressive stress, the ultimate compressive strength (UCS), compressive yield stress (CYS), Young's modulus (E), shear strain, phase transformation, dislocation distribution, and total deformation length is thoroughly examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!