Using small-angle x-ray scattering (SAXS), we investigated the phase behavior of mesophases of monoolein (MO) mixed with additives commonly used for the crystallization of membrane proteins from lipidic mesophases. In particular, we examined the effect of sodium and potassium phosphate salts and the detergent β-octylglucoside (βOG) over a wide range of compositions relevant for the crystallization of membrane proteins in lipidic mesophases. We studied two types of systems: 1), ternary mixtures of MO with salt solutions above the hydration boundary; and 2), quaternary mixtures of MO with βOG and salt solutions over a wide range of hydration conditions. All quaternary mixtures showed highly regular lyotropic phase behavior with the same sequence of phases (Lα, Ia3d, and Pn3m) as MO/water mixtures at similar temperatures. The effects of additives in quaternary systems agreed qualitatively with those found in ternary mixtures in which only one additive is present. However, quantitative differences in the effects of additives on the lattice parameters of fully hydrated mesophases were found between ternary and quaternary mixtures. We discuss the implications of these findings for mechanistic investigations of membrane protein crystallization in lipidic mesophases and for studies of the suitability of precipitants for mesophase-based crystallization methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797584PMC
http://dx.doi.org/10.1016/j.bpj.2013.09.009DOI Listing

Publication Analysis

Top Keywords

salt solutions
12
phase behavior
12
lipidic mesophases
12
quaternary mixtures
12
detergent β-octylglucoside
8
crystallization membrane
8
membrane proteins
8
proteins lipidic
8
wide range
8
ternary mixtures
8

Similar Publications

Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.

View Article and Find Full Text PDF

Hydronium Ions Are Less Excluded from Hydrophobic Polymer-Water Interfaces than Hydroxide Ions.

J Phys Chem B

December 2024

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.

View Article and Find Full Text PDF

Tailoring Acid-Salt Hybrid Electrolyte Structure for Stable Proton Storage at Ultralow Temperature.

Adv Mater

December 2024

Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.

The critical challenges in developing ultralow-temperature proton-based energy storage systems are enhancing the diffusion kinetics of charge carriers and inhibiting water-triggered interfacial side reactions between electrolytes and electrodes. Here an acid-salt hybrid electrolyte with a stable anion-cation-HO solvation structure that realizes unconventional proton transport at ultralow temperature is shown, which is crucial for electrodes and devices to achieve high rate-capacity and stable interface compatibility with electrodes. Through multiscale simulations and experimental investigations in the electrolyte employing ZnCl introduced into 0.

View Article and Find Full Text PDF

Gel electrolytes have emerged as a promising solution for enhancing the performance of zinc-ion batteries (ZIBs), particularly in flexible devices. However, they face challenges such as low-temperature inefficiency, constrained ionic conductivity, and poor mechanical strength. To address these issues, this study presents a novel PAMCD gel electrolyte with tunable freezing point and mechanical properties for ZIBs, blending the high ionic conductivity of polyacrylamide with the anion interaction capability of β-cyclodextrin.

View Article and Find Full Text PDF

Background: Selenium nanoparticles (SeNPs) are highly sought after in diverse industries for their distinct properties and advantages. SeNPs can be synthesized via several methods, including the use of microwave, bain-marie, autoclave, and heater.

Objective: The objective is to optimize the SeNP synthesis formulation, emphasizing stability, concentration, particle size minimization, and uniformity using central composite design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!