This work has focused on the development of electrospun TiO2 fiber composite photoelectrodes for hydrogen production by water splitting. For comparison, similar photoelectrodes were also developed using commercial TiO2 (Aeroxide P25) nanoparticles (NPs). Dispersions of either fibers or P25 NPs were used to make homogenous TiO2 films on fluorine-doped SnO2 (FTO) glass substrates by a doctor blade (DB) technique. Scanning electron microscopy (SEM) analysis revealed a much lower packing density of the DB fibers, with respect to DB-P25 TiO2 NPs; this was also directly reflected by the higher photocurrent measured for the NPs when irradiating the photoelectrodes at a light intensity of 1.5AM (1 sun, 1000 W/m(2)). For a better comparison of fibers vs. NPs, composite photoelectrodes by dip-coating (onto FTO) TiO2 sol-gel (SG) matrixes containing an equal amount (5 or 20 wt %) of either fibers or P25 NPs were also investigated. It emerged that the photoactivity of the fibers was significantly higher. For composites containing 5 wt % TiO2 fibers, a photocurrent of 0.5 mA/cm(2) (at 0.23 V vs Ag/AgCl) was measured, whereas 5 wt % P25 NPs only provided 0.2 mA/cm(2). When increasing to 20 wt % fibers or NPs, the photocurrent decreased, because of the formation of microcracks in the photoelectrodes, because of the shrinkage of the sol-gel. The high photoactivity of the fiber-based electrodes could be confirmed by incident photon to current efficiency (IPCE) measurements. Remarkably, the IPCE of composites containing 5 wt % fibers was between 35% and 40% in the region of 380-320 nm, and when accounting for transmission/reflection losses, the absorbed photon to current efficiency (APCE) was consistently over 60% between 380 nm and 320 nm. The superior photoactivity is attributed to the enhanced electron transport in the electrospun fibers, with respect to P25 NPs. According to this study, it is clear that the electronic connectivity ensured by the sol-gel also contributes positively to the enhanced photocurrent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am403437q | DOI Listing |
ACS Omega
October 2024
Chemistry Department, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema SP-09913-030, Brazil.
This study focuses on comparing the efficiency of commercially available TiO (P25) with synthesized TiO nanoparticles (TiONP) impregnated in nonmodified cellulose membranes, specifically targeting the degradation of Indigo Carmine (IC) dye. We developed a novel method to enhance the interaction between cellulose and TiO, thereby improving efficiency and reusability. This involves dissolving microcrystalline cellulose in 1-butyl-3-methylimidazolium chloride (BMImCl) and dispersing the TiO samples within this solution.
View Article and Find Full Text PDFMolecules
October 2024
Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.
TiO used for photocatalytic water purification is most active in the form of nanoparticles (NP), but their use is fraught with difficulties in separation from solution or/and a tendency to agglomerate. The novel materials designed in this work circumvent these problems by immobilizing TiO NPs on the surface of exfoliated clay minerals. A series of TiO/clay mineral composites were obtained using five different clay components: the Na-, CTA-, or H-form of montmorillonite (Mt) and Na- or CTA-form of laponite (Lap).
View Article and Find Full Text PDFJ Phys Chem B
September 2024
Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.
RSC Adv
July 2024
PowerChina Huadong Engineering Corporation Limited Hangzhou 311122 P. R. China.
The photo-reduction of bromate (BrO ) has attracted much attention due to the carcinogenesis and genotoxicity of BrO in drinking water. In this study, a heterojunction photocatalyst was developed by depositing Au nanoparticles (NPs) onto P25 TiO NPs through a one-pot, solvent-thermal process. Due to the unique properties of Au, the Au NPs deposited on the TiO surface created a Schottky barrier between the metal and the semiconductor, leading to an effective separation of photo-generated charge carriers as the Au nanoparticles served as electron sinks.
View Article and Find Full Text PDFNanomaterials (Basel)
June 2024
Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.
Titania nanoparticles (NPs) find wide application in photocatalysis, photovoltaics, gas sensing, lithium batteries, etc. One of the most important synthetic challenges is maintaining control over the polymorph composition of the prepared nanomaterial. In the present work, TiO NPs corresponding to anatase, rutile, or an anatase/rutile/brookite mixture were obtained at 80 °C by an inverse microemulsion method in a ternary system of water/cetyltrimethylammonium bromide/1-hexanol in a weight ratio of 17:28:55.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!