Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although methylation reactions are commonplace, currently used reagents are hazardous, toxic, and/or unstable. Dimethylcarbonate has been put forth as an inexpensive, nontoxic, and "green" potential methylating reagent. Herein we report a general, base-catalyzed methyl transfer from dimethylcarbonate to carboxylic acids. High selectivity for esterification is observed even in the presence of unprotected phenols, and the mild reaction conditions enable conservation of stereochemistry at epimerizable stereocenters. Isotope-labeling studies suggest a mechanism proceeding by direct methyl transfer from dimethylcarbonate to the substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo401941v | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!