Excitation of single quasiparticles in a small superconducting Al island connected to normal-metal leads by tunnel junctions.

Phys Rev Lett

Low Temperature Laboratory (OVLL), Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland and Centre for Metrology and Accreditation (MIKES), P.O. Box 9, 02151 Espoo, Finland.

Published: October 2013

We investigate the dynamics of individual quasiparticle excitations on a small superconducting aluminum island connected to normal metallic leads by tunnel junctions. We find the island to be free of excitations within the measurement resolution. This allows us to show that the residual heating, which typically limits experiments on superconductors, has an ultralow value of less than 0.1 aW. By injecting electrons with a periodic gate voltage, we probe electron-phonon interaction and relaxation down to a single quasiparticle excitation pair, with a measured recombination rate of 16 kHz. Our experiment yields a strong test of BCS theory in aluminum as the results are consistent with it without free parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.111.147001DOI Listing

Publication Analysis

Top Keywords

small superconducting
8
island connected
8
leads tunnel
8
tunnel junctions
8
excitation single
4
single quasiparticles
4
quasiparticles small
4
superconducting island
4
connected normal-metal
4
normal-metal leads
4

Similar Publications

Enhanced Sodium Storage and Thermal Safety of NaNiFeMnO Cathode via Incorporation of TiN and WO.

ACS Appl Mater Interfaces

January 2025

College of Physics and Energy, Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, Fujian Normal University, Fuzhou 350117, China.

This study proposes an efficient, cost-effective, and industrially scalable electrode modulation strategy, which involves directly adding a small amount of high thermal and high conductance TiN and well interface compatible WO to NaNiFeMnO (NaNFMO-TW) cathode slurry, to effectively reduce electrode polarization and interface side reactions, reduce the Ohmic heat and polarization heat of the battery, and ultimately to significantly improve the sodium-ion storage and thermal safety performance of the battery. At room temperature (RT) and 1C rate, the modified NaNFMO-TW electrode exhibits a reversible capacity of ∼95 mAh g after 300 cycles, with a capacity retention rate of 82.6%, being higher than the 50.

View Article and Find Full Text PDF

Ultrahigh-Power Carbon-Based Supercapacitors through Order-Disorder Balance.

Small

January 2025

Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610031, China.

Although carbon-based supercapacitors (SCs) hold the advantages of high-power and large-current characteristics, they are difficult to realize ultrahigh-power density (> 200 kW kg) and maintain almost constant energy density at ultrahigh power. This limitation is mainly due to the difficulty in balancing the structural order related to the electrical conductivity of carbon materials and the structural disorder related to the pore structure. Herein, we design a novel super-structured tubular carbon (SSTC) with a crosslinked porous conductive network to solve the structure order-disorder tradeoff effect in carbon materials.

View Article and Find Full Text PDF

Integration of Through-Sapphire Substrate Machining with Superconducting Quantum Processors.

Adv Mater

January 2025

Oxford Quantum Circuits, Thames Valley Science Park, Shinfield, Reading, RG2 9LH, UK.

A sapphire machining process integrated with intermediate-scale quantum processors is demonstrated. The process allows through-substrate electrical connections, necessary for low-frequency mode-mitigation, as well as signal-routing, which are vital as quantum computers scale in qubit number, and thus dimension. High-coherence qubits are required to build fault-tolerant quantum computers and so material choices are an important consideration when developing a qubit technology platform.

View Article and Find Full Text PDF

Sub-millikelvin-resolved superconducting nanowire single-photon detector operates with sub-pW infrared radiation power.

Natl Sci Rev

January 2025

Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.

The noise equivalent temperature difference (NETD) indicates the minimum temperature difference resolvable by using an infrared detector. The lower the NETD, the better the sensor can register small temperature differences. In this work, we proposed a strategy to achieve a high temperature resolution using a superconducting nanowire single-photon detector (SNSPD) with ultra-high sensitivity.

View Article and Find Full Text PDF

Thickness-dependent polaron crossover in tellurene.

Sci Adv

January 2025

Department of Electrical and Computer Engineering and the Rice Advanced Materials Institute, Rice University, Houston, TX 77005, USA.

Polarons, quasiparticles from electron-phonon coupling, are crucial for material properties including high-temperature superconductivity and colossal magnetoresistance. However, scarce studies have investigated polaron formation in low-dimensional materials with phonon polarity and electronic structure transitions. In this work, we studied polarons of tellurene, composed of chiral Te chains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!