In vitro and in vivo evaluation of porous PCL-PLLA 3D polymer scaffolds fabricated via salt leaching method for bone tissue engineering applications.

J Biomater Sci Polym Ed

a Department of Regenerative Medicine, Institute of Tissue Regeneration , College of Medicine, Soonchunhyang University, 366-1, Ssangyoung-dong , Cheonan , Chungnam 330-090 , South Korea.

Published: September 2014

Three dimensional porous scaffolds composed of various ratios of polycaprolactone and poly(L-lactic acid) (PLLA) were prepared using salt leaching method for bone regeneration applications. Surfaces of the scaffolds were visualized using scanning electron microscope (SEM) and the combination of the polymers was confirmed by FT-IR. Addition of PLLA increased the porosity and pore sizes of the scaffolds and also the scaffolds' compressive strength initially. Osteoblast-like cells were used and it was found that the samples' cell biocompatibility was further promoted with the increase in PLLA content as observed via cell proliferation assays using MTT, gene expression with RT-PCR, and micrographs from SEM and confocal microscopy. Samples were then implanted into male rabbits for 2 months, and histological staining and micro-CT histomorphometry show that new bone formations were detected in the site containing the implants of the scaffolds and that bone regeneration was further promoted with the increased concentration of PLLA in the scaffold.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2013.846633DOI Listing

Publication Analysis

Top Keywords

salt leaching
8
leaching method
8
method bone
8
bone regeneration
8
scaffolds
5
vitro vivo
4
vivo evaluation
4
evaluation porous
4
porous pcl-plla
4
pcl-plla polymer
4

Similar Publications

Background: Given the risks associated with autologous bone transplantation and the limitations of allogeneic bone transplantation, scaffolds in bone tissue engineering that incorporate bioactive peptides are highly recommended. Teriparatide (TPTD) plays a significant role in bone defect repair, although achieving controlled release of TPTD within a bone tissue engineering scaffold remains challenging. This work reports a new approach for treatment of teriparatide using a water-in-oil-in-water (w/o/w) microspheres be equipped on gelatin (GEL)/Poly lactic-glycolic acid (PLGA)/attapulgite (ATP) scaffold.

View Article and Find Full Text PDF

To further improve the leaching behavior of chromite in the submolten salt medium of NaOH-HO, a microwave roasting pretreatment for chromite is proposed in the present work. Effects of the roasting pretreatment modes and reaction parameters on the leaching rate of Cr were systematically investigated. The results showed that the leaching rate of Cr from the chromite ore could be greatly boosted after microwave roasting.

View Article and Find Full Text PDF

Construction of efficient ethylene removal and antibacterial cellulose paper-based packaging materials for avocado preservation.

Int J Biol Macromol

January 2025

Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada. Electronic address:

Fruits are susceptible to ethylene ripening and microbial infestation, which can lead to spoilage and further significant economic losses. Thus, using functional preservation materials is an effective controlling technology to improve the post-harvest quality and extend the shelf life of fruits. Hence, a dual-function cellulose-based paper with exceptional antibacterial efficiency, favourable ethylene removal performance, improved mechanical and hydrophobic properties was prepared by covalently grafted antibacterial guanidine salt and surface-modified ethylene scavenger.

View Article and Find Full Text PDF

Catheter-associated urinary tract infection (CAUTI) induced by rapid bacterial colonization and biofilm formation on urinary catheters is a key issue that urgently needs to be addressed. To prevent CAUTI, many contact-killing, non-leaching coatings have been developed for the surfaces of silicone catheters. However, due to the chemical inertness of the silicone substrate, most current coatings lack adhesion and are unstable under external forces.

View Article and Find Full Text PDF

The composition of TBFS is complex. It is categorized into low (W < 5%), medium (5% < W < 20%), and high-titanium slag (W > 20%) based on Ti content. The titanium in the slag is underutilized, causing it to accumulate and contribute to environmental pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!