A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synchrotron X-ray studies of rapidly evolving morphology of self-assembled nanoparticle films under lateral compression. | LitMetric

Interfacial nanostructures represent a class of systems that are highly relevant to studies of quasi-2D phases, chemical self-assembly, surfactant behavior, and biologically relevant membranes. Previous studies have shown that under lateral compression a Langmuir film of gold (Au) nanoparticles assembled at the liquid-air interface exhibits rich mechanical behavior: it undergoes a rapid structural and morphological evolution from a monolayer to a trilayer via an intermediate hash-like phase. We report the results of studying this structural evolution using grazing incidence X-ray off-specular scattering (GIXOS). We utilize GIXOS to obtain a quantitative mapping of electron density profile normal to the liquid surface with a subnanometer resolution and follow the structural evolution of the Au nanoparticle film under lateral compression with a subminute temporal resolution. As the surface pressure is increased, the self-assembled nanoparticle monolayer first crinkles into a double-layer phase before forming a trilayer. This study reveals the existence of a transient bilayer phase and provides a microscopic picture of the particle-level crinkling phenomena of ultrathin films. These studies were previously impossible due to the relatively short time scales involved in crinkling formation of these transient phases and their intrinsically inhomogeneous nature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la403252dDOI Listing

Publication Analysis

Top Keywords

lateral compression
12
self-assembled nanoparticle
8
structural evolution
8
synchrotron x-ray
4
studies
4
x-ray studies
4
studies rapidly
4
rapidly evolving
4
evolving morphology
4
morphology self-assembled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!