Modern optical methods (multiphoton and light-sheet fluorescent microscopy) allow 3D imaging of large specimens of the brain with cell resolution. It is therefore essential to refer the resultant 3D pictures of expression of transgene, protein, and other markers in the brain to the corresponding structures in the atlas. This implies counterstaining of specimens with morphological dyes. However, there are no methods for contrasting large samples of the brain without their preliminary slicing. We have developed a method for fluorescent Nissl staining of whole brain samples. 3D reconstructions of specimens of the hippocampus, olfactory bulbs, and cortex were created. The method can be used for morphological control and evaluation of the effects of various factors on the brain using 3D microscopy technique.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-013-2162-9DOI Listing

Publication Analysis

Top Keywords

fluorescent nissl
8
nissl staining
8
brain
6
brain morphology
4
morphology imaging
4
imaging microscopy
4
microscopy fluorescent
4
staining modern
4
modern optical
4
optical methods
4

Similar Publications

Research on the protective effect of Rhizoma of Anemarrhena asphodeloides on TMT induced AD mice model based on network pharmacology combined with in vitro and in vivo experimental validation.

J Pharmacol Sci

February 2025

Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, 236000, China. Electronic address:

Background: Alzheimer's disease (AD) is a neurodegenerative disease, and neuroprotection is an important approach to improving AD outcomes. Rhizoma of Anemarrhena asphodeloides (RAA) is a commonly used Traditional Chinese Medicine (TCM) with demonstrated neuroprotective effects, but its anti-AD mechanism requires further exploration.

Aim Of The Study: To elucidate the neuroprotective mechanism of RAA on TMT-induced AD mice.

View Article and Find Full Text PDF

Introduction: Ischemic stroke greatly threatens human life and health. Neuro-restoration is considered to be the critical points in reestablishing neurological function and improving the quality of life of patients. Catalpol is the main active ingredient of the Chinese herbal medicine , which has the beneficial efficacy in traditional remedy, is closely related to the mitochondrial morphology and function.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how Anmeidan affects hippocampal neurons in sleep-deprived rats.
  • Sixty SD rats were divided into four groups: blank, model, Anmeidan, and melatonin, with Anmeidan being given at 18.18 g·kg~(-1)·d~(-1) for four weeks.
  • Results indicate that sleep deprivation significantly impairs rat behavior, reduces hippocampal neuron health, and alters key protein expressions involved in synaptic function compared to the blank group.
View Article and Find Full Text PDF

Targeting TXNIP for neuroprotection: A novel approach to reducing inflammation and promoting recovery in ischemic stroke.

Biomol Biomed

December 2024

Department of Science and Education, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Occupational Health, Anhui Provincial People's Hospital, Hefei, China.

Ischemic stroke often results in high mortality and significant disability. Current research primarily focuses on understanding neuroinflammation and cell death following a stroke to identify novel therapeutic targets. This study investigates the endothelial cell-specific role of Thioredoxin interacting protein (TXNIP) in ischemic stroke and its underlying molecular mechanisms both in vitro and in vivo.

View Article and Find Full Text PDF

The disruption of the local microenvironment subsequent to spinal cord injury (SCI) leads to a substantial loss of neurons in the affected region, which is a major contributing factor to impaired motor function recovery in patients. Fibroblast growth factor 20 (FGF20) is a neurotrophic factor that plays a crucial role in neuronal development and homeostasis. In this study, the recombinant human FGF20 (rhFGF20) was found to mitigate the process of necroptosis in a mouse model of SCI, thereby reducing neural functional deficits and promoting SCI repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!