In the primary motor cortex (M1), layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolving the basis for their diversity. We therefore probed the electrophysiological and morphological properties of retrogradely labeled M1 corticospinal (CSp), corticothalamic (CTh), and commissural projecting corticostriatal (CStr) and corticocortical (CC) neurons. An unsupervised cluster analysis established at least four phenotypes with additional differences between lumbar and cervical projecting CSp neurons. Distinguishing parameters included the action potential (AP) waveform, firing behavior, the hyperpolarisation-activated sag potential, sublayer position, and soma and dendrite size. CTh neurons differed from CSp neurons in showing spike frequency acceleration and a greater sag potential. CStr neurons had the lowest AP amplitude and maximum rise rate of all neurons. Temperature influenced spike train behavior in corticofugal neurons. At 26°C CTh neurons fired bursts of APs more often than CSp neurons, but at 36°C both groups fired regular APs. Our findings provide reliable phenotypic fingerprints to identify distinct M1 projection neuron classes as a tool to understand their unique contributions to motor function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797544 | PMC |
http://dx.doi.org/10.3389/fncel.2013.00174 | DOI Listing |
Clin Sci (Lond)
January 2025
Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.
Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
University of Strathclyde, Institute of Photonics, SUPA Dept of Physics, Glasgow, United Kingdom.
We report a spiking flip-flop memory mechanism that allows controllably switching between neural-like excitable spike-firing and quiescent dynamics in a resonant tunneling diode (RTD) neuron under low-amplitude (<150 mV pulses) and high-speed (ns rate) inputs pulses. We also show that the timing of the set-reset input pulses is critical to elicit switching responses between spiking and quiescent regimes in the system. The demonstrated flip-flop spiking memory, in which spiking regimes can be controllably excited, stored, and inhibited in RTD neurons via specific low-amplitude, high-speed signals (delivered at proper time instants) offers high promise for RTD-based spiking neural networks, with the potential to be extended further to optoelectronic implementations where RTD neurons and RTD memory elements are deployed alongside for fast and efficient photonic-electronic neuromorphic computing and artificial intelligence hardware.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School;
A method to quantitate the stabilization of Mitochondria-Associated endoplasmic reticulum Membranes (MAMs) in a 3-dimensional (3D) neural model of Alzheimer's disease (AD) is presented here. To begin, fresh human neuro progenitor ReN cells expressing β-amyloid precursor protein (APP) containing familial Alzheimer's disease (FAD) or naïve ReN cells are grown in thin (1:100) Matrigel-coated tissue culture plates. After the cells reach confluency, these are electroporated with expression plasmids encoding red fluorescence protein (RFP)-conjugated mitochondria-binding sequence of AKAP1(34-63) (Mito-RFP) that detects mitochondria or constitutive MAM stabilizers MAM 1X or MAM 9X that stabilize tight (6 nm ± 1 nm gap width) or loose (24 nm ± 3 nm gap width) MAMs, respectively.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
The global prevalence of Parkinson's Disease (PD) is on the rise, driven by an ageing population and ongoing environmental conditions. To gain a better understanding of PD pathogenesis, it is essential to consider its relationship with the ageing process, as ageing stands out as the most significant risk factor for this neurodegenerative condition. PD risk factors encompass genetic predisposition, exposure to environmental toxins, and lifestyle influences, collectively increasing the chance of PD development.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Huai'an Hospital Affiliated to Yangzhou University, The Fifth People's Hospital of Huai'an), 1 Huaihe East Road, Huaiyin District, Huai'an City, Jiangsu Province, China.
Ginkgolide B (GB) is a bioactive constituent found in Ginkgo biloba leaves that has been long recognized as a protective agent against many neurological disorders. Our study aimed to examine the effect of GB in an in vitro Parkinson's disease (PD) model and to investigate its neuroprotective mechanism as a primary objective. SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium (MPP) to act as a PD-like model of neuronal damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!