RNA catalytic activity as a probe of chaperone-mediated RNA folding.

Methods Mol Biol

Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.

Published: May 2014

AI Article Synopsis

  • The study focuses on using catalytic activity of structured RNAs, like ribozymes from self-splicing group I introns, as a tool to measure RNA folding and the role of RNA chaperone proteins.
  • This method is able to differentiate between native (functional) and misfolded RNA forms, providing a quantitative assessment of the folding progress over time.
  • It also details a protocol for a two-stage assay to monitor folding under various conditions, helping to understand how RNA chaperones, such as DEAD-box helicases, improve RNA folding efficiency.

Article Abstract

For structured RNAs that possess catalytic activity, this activity provides a powerful probe for measuring the progress of folding and the effects of RNA chaperone proteins on the folding rate. The crux of this approach is that only the natively folded RNA is able to perform the catalytic reaction. This method can provide a quantitative measure of the fraction of native RNA over time, and it can readily distinguish the native state from all misfolded conformations. Here we describe an activity-based method measuring native folding of ribozymes derived from self-splicing group I introns, and we show how the assay can be used to monitor acceleration of native folding by DEAD-box RNA helicase proteins that function as general RNA chaperones. By measuring the amount of substrate that is converted to product in a rapid first turnover, we describe how to determine the fraction of the ribozyme population that is present in the native state. Further, we describe how to perform a two-stage or discontinuous assay in which folding proceeds in stage one and then solution conditions are changed in stage two to permit catalytic activity and block further folding. This protocol allows folding to be followed under a broad range of solution conditions, including those that do not support catalytic activity, and facilitates studies of chaperone proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5301988PMC
http://dx.doi.org/10.1007/978-1-62703-667-2_13DOI Listing

Publication Analysis

Top Keywords

catalytic activity
16
folding
8
chaperone proteins
8
native state
8
native folding
8
solution conditions
8
rna
7
activity
5
native
5
rna catalytic
4

Similar Publications

Polycomb repressive complex 2 (PRC2), composed of the core subunits EED, SUZ12, and either EZH1 or EZH2, is critical for maintaining cellular identity in multicellular organisms. PRC2 deposits H3K27me3, which is thought to recruit the canonical form of PRC1 (cPRC1) to promote gene repression. Here, we show that EZH1-PRC2 and cPRC1 are the primary Polycomb complexes on target genes in non-dividing, quiescent cells.

View Article and Find Full Text PDF

Verona-integron-metallo-β-lactamase (VIM-2) is one of the most widespread class B β-lactamase responsible for β-lactam resistance. Although active-site residues help in metal binding, the residues nearing the active-site possess functional importance. Here, to decipher the role of such residues in the activity and stability of VIM-2, the residues E146, D182, N210, S207, and D213 were selected through in-silico analyses and substituted with alanine using site-directed mutagenesis.

View Article and Find Full Text PDF

Efficient amine-assisted CO hydrogenation to methanol co-catalyzed by metallic and oxidized sites within ruthenium clusters.

Nat Commun

January 2025

Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.

Amine-assisted two-step CO hydrogenation is an efficient route for methanol production. To maximize the overall catalytic performance, both the N-formylation of amine with CO (i.e.

View Article and Find Full Text PDF

Molecular basis for the enzymatic inactivity of class III glutaredoxin ROXY9 on standard glutathionylated substrates.

Nat Commun

January 2025

Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.

Class I glutaredoxins (GRXs) are nearly ubiquitous proteins that catalyse the glutathione (GSH)-dependent reduction of mainly glutathionylated substrates. In land plants, a third class of GRXs has evolved (class III). Class III GRXs regulate the activity of TGA transcription factors through yet unexplored mechanisms.

View Article and Find Full Text PDF

The performance of Cu-exchanged chabazite (Cu-CHA) for the ammonia-assisted selective catalytic reduction of NO (NH-SCR) depends critically on the presence of paired complexes. Here, a machine-learning force field augmented with long-range Coulomb interactions is developed to investigate the effect of Al-distribution and Cu-loading on the mobility and pairing of complexes. Performing unbiased and constrained molecular dynamics simulations, we obtain unique information inaccessible to first-principle calculations and experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!