Background: UDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE) is a bifunctional enzyme responsible for the first committed steps in the synthesis of sialic acid, a common terminal monosaccharide in both protein and lipid glycosylation. GNE mutations are responsible for a rare autosomal recessive neuromuscular disorder, GNE myopathy (also called hereditary inclusion body myopathy). The connection between the impairment of sialic acid synthesis and muscle pathology in GNE myopathy remains poorly understood.
Methods: Glycosphingolipid (GSL) analysis was performed by HPLC in multiple models of GNE myopathy, including patients' fibroblasts and plasma, control fibroblasts with inhibited GNE epimerase activity through a novel imino sugar, and tissues of Gne(M712T/M712T) knock-in mice.
Results: Not only neutral GSLs, but also sialylated GSLs, were significantly increased compared to controls in all tested models of GNE myopathy. Treatment of GNE myopathy fibroblasts with N-acetylmannosamine (ManNAc), a sialic acid precursor downstream of GNE epimerase activity, ameliorated the increased total GSL concentrations.
Conclusion: GNE myopathy models have increased total GSL concentrations. ManNAc supplementation results in decrease of GSL levels, linking abnormal increase of total GSLs in GNE myopathy to defects in the sialic acid biosynthetic pathway. These data advocate for further exploring GSL concentrations as an informative biomarker, not only for GNE myopathy, but also for other disorders of sialic acid metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979983 | PMC |
http://dx.doi.org/10.1007/s10545-013-9655-6 | DOI Listing |
Cell Biol Int
December 2024
School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
Rare genetic disorders are low in prevalence and hence there is little or no attention paid to them in the mainstream medical industry. One of the ultra-rare neuromuscular disorders, GNE myopathy is caused due to biallelic mutations in the bifunctional enzyme, GNE (UDP N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase). It catalyses the rate-limiting step in sialic acid biosynthesis.
View Article and Find Full Text PDFMol Genet Metab
November 2024
Department of Neurology, Pusan National University School of Medicine, Busan, Republic of Korea; Department of Neurology and Biomedical Research institute, Pusan National University Yangsan Hospital, Gyeongsangnam-do, Republic of Korea. Electronic address:
Eur J Obstet Gynecol Reprod Biol
January 2025
Andhra Medical College, Vishakapatnam, Andhra Pradesh, India.
Neurol Genet
December 2024
From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China.
Molecules
November 2024
Department of Life and Environmental Sciences, Cittadella Universitaria di Monserrato, Blocco A, Room 13, 09042 Monserrato, Italy.
GNE myopathy, also known as hereditary inclusion body myopathy (HIBM), is a rare genetic muscle disorder marked by a gradual onset of muscle weakness in young adults. GNE myopathy (GNEM) is caused by bi-allelic variants in the UDP--acetylglucosamine 2-epimerase (UDP-GlcNAc 2-epimerase)/-acetylmannosamine kinase (ManNAc kinase) gene (), clinically resulting in the loss of ambulation within 10-20 years from the onset of the initial symptoms. The disease's mechanism is poorly understood and non-invasive biomarkers are lacking, hindering effective therapy development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!