Seed proteomics.

Methods Mol Biol

USDA, Agricultural Research Service, Plant Genetics Research Unit, Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA.

Published: May 2014

Rather than providing a single specific protocol, the inclusive area of seed proteomics is reviewed; methods are described and compared and primary literature citations are provided. The limitations and challenges of proteomics as an approach to study seed biology are emphasized. The proteomic analysis of seeds encounters some specific problems that do not impinge on analyses of other plant cells, tissues, or organs. There are anatomic considerations. Seeds comprise the seed coat, the storage organ(s), and the embryonic axis. Are these to be studied individually or as a composite? The physiological status of the seeds must be considered; developing, mature, or germinating? If mature, are they quiescent or dormant? If mature and quiescent, then orthodox or recalcitrant? The genetic uniformity of the population of seeds being compared must be considered. Finally, seeds are protein-rich and the extreme abundance of the storage proteins results in a study-subject with a dynamic range that spans several orders of magnitude. This represents a problem that must be dealt with if the study involves analysis of proteins that are of "normal" to low abundance. Several different methods of prefractionation are described and the results compared.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-62703-631-3_26DOI Listing

Publication Analysis

Top Keywords

seed proteomics
8
described compared
8
mature quiescent
8
seeds
5
seed
4
proteomics providing
4
providing single
4
single specific
4
specific protocol
4
protocol inclusive
4

Similar Publications

Cotton (Gossypium hirsutum L.), a crucial global fibre and oil seed crop faces diverse biotic and abiotic stresses. Among these, temperature stress strongly influences its growth, prompting adaptive physiological, biochemical, and molecular changes.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden.

Background: Lewy bodies (LB), the main hallmark of Parkinson's disease (PD), are a frequent co-pathology in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). The varying extents of LB pathology in these disorders can influence disease progression and severity. Consequently, understanding LB impact on the proteomic profile of these diseases is crucial, potentially leading to identifyng novel blood biomarkers related to this pathology which are urgently needed.

View Article and Find Full Text PDF

The valorization of grape pomace from Montepulciano winemaking: A new source of functional ingredients for sustainable food industry.

Food Res Int

January 2025

Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici (Naples), Italy; Institute of Food Science & Technology, National Research Council, Via Roma 52, 83100, Avellino, Italy. Electronic address:

The winemaking process generates huge amounts of waste every year. Fermented grape pomace, the major by-waste product, holds significant value due to its chemical composition and technological properties. In this study a multi-omics approach was employed for the detailed molecular characterization of fermented grape pomace from Montepulciano grape, a widely used Italian red grape variety.

View Article and Find Full Text PDF

Aim: Bacillus subtilis is usually found in soil, and their biocontrol and plant growth promoting capabilities are being explored more recently than ever. However, knowledge about metabolite production and genome composition of endophytic Bacillus subtilis from seeds is limited. In the present study, Bacillus subtilis EVCu15 strain isolated from the seeds of Vasconcellea cundinamarcensis (mountain papaya) was subjected to whole genome sequencing, and detailed molecular and functional characterization.

View Article and Find Full Text PDF

Proteomics- and metabolomics-based analysis of the regulation of germination in Norway maple and sycamore embryonic axes.

Tree Physiol

January 2025

Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France.

Norway maple and sycamore belong to the Acer genus and produce desiccation-tolerant and desiccation-sensitive seeds, respectively. We investigated the seed germination process at the imbibed and germinated stages using metabolomic and proteomic approaches to determine why sycamore seeds germinate earlier and are more successful at establishing seedlings than Norway maple seeds under controlled conditions. Embryonic axes and embryonic axes with protruded radicles were analyzed at the imbibed and germinated stages, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!