Using the yeast two-hybrid system to identify protein-protein interactions.

Methods Mol Biol

Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA- CSIC), Universidad de Málaga, Málaga, Spain.

Published: May 2014

The yeast two-hybrid system is currently one of the most standardized protein interaction mapping techniques. The rationale of the yeast two-hybrid system relies on the physical separation of the DNA-binding domain from the transcriptional activation domain of several transcription factors. The protein of interest (bait) is fused to a DNA-binding domain, and complementary DNA (cDNA) library-encoded proteins are fused to a transcriptional activation domain. When a protein encoded by the cDNA library binds to the bait, both activities of the transcription factor are rejoined resulting in transcription from a reporter gene. Here, we describe protocols to test interactions between two individual proteins and to look for novel interacting partners by screening a single protein or domain against a library of other proteins using a GAL4 based yeast two-hybrid system.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-62703-631-3_18DOI Listing

Publication Analysis

Top Keywords

yeast two-hybrid
16
two-hybrid system
16
dna-binding domain
8
transcriptional activation
8
activation domain
8
domain
5
yeast
4
system
4
system identify
4
identify protein-protein
4

Similar Publications

SH2B1β is a multifunctional scaffold protein that modulates cytoskeletal processes such as cellular motility and neurite outgrowth. To identify novel SH2B1β-interacting proteins involved in these processes, a yeast two-hybrid assay was performed. The C-terminal 159 residues of the cytoskeleton structural protein, βIIΣ1-spectrin, interacted with the N-terminal 260 residues of SH2B1β, a region implicated in SH2B1β enhancement of cell motility and localization at the plasma membrane.

View Article and Find Full Text PDF

An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P-type heavy-metal ATPases (HMAs), PhHMA5II1.

View Article and Find Full Text PDF

WD40 proteins PaTTG1 interact with both bHLH and MYB to regulate trichome formation and anthocyanin biosynthesis in Platanus acerifolia.

Plant Sci

January 2025

Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, HeFei 230036, PR China. Electronic address:

Trichome development and anthocyanin accumulation are regulated by a complex regulatory network, the MBW complexes consist of MYB, bHLH, and WD40 transcription factors. In this study, two sequences, named PaTTG1.1, and PaTTG1.

View Article and Find Full Text PDF

Genome-Wide Identification and Functional Characterization of Gene Family Reveal Its Involvement in Response to Stress in Cotton.

Int J Mol Sci

January 2025

Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.

SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.

View Article and Find Full Text PDF

The MYB-bHLH-NRAMP module modulates the cadmium sensitivity of quinoa by regulating cadmium transport and absorption.

J Hazard Mater

January 2025

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China. Electronic address:

Cadmium (Cd) is one of the most dangerous environmental pollutants and is easily absorbed by food crops. Quinoa is a kind of coarse grain crop with rich nutrition and strong stress resistance, which is easy to accumulate Cd. The increasingly serious soil Cd pollution poses a serious threat to the food safety of quinoa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!