Proteomic technologies have become a successful tool to provide relevant information on fungal biology. In the case of plant pathogenic fungi, this approach would allow a deeper knowledge of the interaction and the biological cycle of the pathogen, as well as the identification of pathogenicity and virulence factors. These two elements open up new possibilities for crop disease diagnosis and environment-friendly crop protection. Phytopathogenic fungi, due to its particular cellular characteristics, can be considered as a recalcitrant biological material, which makes it difficult to obtain quality protein samples for proteomic analysis. This chapter focuses on protein extraction for gel- and LC-based proteomics with specific protocols of our current research with Botrytis cinerea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-62703-631-3_8 | DOI Listing |
Microb Cell Fact
January 2025
School of Life and Health Sciences & College of Tropical Crops, Hainan University, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
Background: Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense is a soil-borne fungal disease.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Tobacco Science, Guizhou University, Guiyang, 550025, China.
Aquaporins are widely present in the plant kingdom and play important roles in plant response to abiotic adversity stresses such as water and temperature extremes. In this study, we investigated the regulatory role of NTPIP2;4 on drought tolerance in tobacco at physiological and transcriptional levels. In this experiment, we constructed an NtPIP2;4 overexpression vector and genetically transformed tobacco variety 'K326' to investigate the mechanism of NtPIP2;4 gene in regulating drought tolerance in tobacco at physiological and transcriptomic levels.
View Article and Find Full Text PDFNat Rev Genet
January 2025
State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
Sci Rep
January 2025
Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India.
The research highlights the importance of exploring endophytic microbiomes of medicinal plants to uncover their potential for secondary metabolite production and their role in the biosynthesis of host-derived compounds. This study was aimed to isolate leaf endophytic bacteria of Rauvolfia serpentina, investigate their antibacterial, antioxidant potentials and detect host-origin compound reserpine using Reverse Phase High-Performance Liquid Chromatography (RPHPLC). Untargeted analysis via Ultra High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) was conducted for profiling main phytochemicals in the leaves and to explore potential bioactive compounds in bacterial extracts.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
This work leverages the additive antipathogenic effects of natural extracts/essential oils (EOs) and probiotics for the treatment of acne vulgaris associated with () and eczema complicated by secondary infections with (). Six probiotic strains and various extracts/EOs were evaluated in a large screening to evaluate their potential against both pathogens. PCB003 was able to inhibit the growth of both pathogens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!