Nutlin-3 preferentially sensitises wild-type p53-expressing cancer cells to DR5-selective TRAIL over rhTRAIL.

Br J Cancer

Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.

Published: November 2013

Background: Tumour cell-selective activation of apoptosis by recombinant human TNF-related apoptosis-inducing ligand (rhTRAIL) is enhanced through co-activation of p53 by chemotherapeutic drugs. The novel anticancer agent nutlin-3 provides a promising alternative for p53 activation by disrupting the interaction between p53 and its negative feedback regulator MDM2.

Methods: We examined whether nutlin-3 enhances apoptosis induction by rhTRAIL and the DR5-selective TRAIL variant D269H/E195R in wild-type p53-expressing ovarian, colon and lung cancer cell lines and in an ex vivo model of human ovarian cancer.

Results: Nutlin-3 enhanced p53, p21, MDM2 and DR5 surface expression. Although nutlin-3 did not induce apoptosis, it preferentially enhanced D269H/E195R-induced apoptosis over rhTRAIL. Combination treatment potentiated the cleavage of caspases 8, 9, 3 and PARP. P53 and MDM2 siRNA experiments showed that this enhanced apoptotic effect was mediated by wild-type p53. Indeed, nutlin-3 did not enhance rhTRAIL-induced apoptosis in OVCAR-3 cells harbouring mutant p53. Addition of the chemotherapeutic drug cisplatin to the combination further increased p53 and DR5 levels and rhTRAIL- and D269H/E195R-induced apoptosis. As a proof of concept, we show that the combination of D269H/E195R, nutlin-3 and cisplatin induced massive apoptosis in ex vivo tissue slices of primary human ovarian cancers.

Conclusion: Nutlin-3 is a potent enhancer of D269H/E195R-induced apoptosis in wild-type p53-expressing cancer cells. Addition of DNA-damaging agents such as cisplatin further enhances DR5-mediated apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833221PMC
http://dx.doi.org/10.1038/bjc.2013.636DOI Listing

Publication Analysis

Top Keywords

wild-type p53-expressing
12
d269h/e195r-induced apoptosis
12
apoptosis
9
nutlin-3
8
p53-expressing cancer
8
cancer cells
8
dr5-selective trail
8
p53
8
human ovarian
8
nutlin-3 preferentially
4

Similar Publications

Mutations in the TP53 tumor suppressor genes are prevalent in aggressive cancers. Pharmacological reactivation of dysfunctional p53 due to mutations is a promising strategy for treating such cancers. Recently, a multifunctional proline- and glutamine-rich protein, PTB-associated splicing factor (PSF), was identified as a key driver of aggressive cancers.

View Article and Find Full Text PDF

The six most common missense mutations in the DNA binding domain of p53 are known as "hot spots" and include two of the most frequently occurring p53 mutations (p53-R175H and p53-R273H). p53 stability and function are regulated by various post-translational modifications such as phosphorylation, acetylation, sumoylation, methylation, and interactions with other proteins including plakoglobin. Previously, using various carcinoma cell lines we showed that plakoglobin interacted with wild-type and several endogenous p53 mutants (e.

View Article and Find Full Text PDF

MANIO is an efficient p53-activating anticancer agent with remarkable selectivity to the p53 pathway and promising antitumor activity against colorectal cancer (CRC). Herein, a library of novel MANIO derivatives, including hydroxymethyl- and bis(hydroxymethyl)-1,3-pyrrolo[1,2-]thiazoles, was synthesized by rational structural modulation. The antiproliferative activity of twenty derivatives was evaluated in a panel of human CRC cells with different p53 status.

View Article and Find Full Text PDF

Lung adenocarcinoma (LUAD) is one of the most prevalent types of cancer. Ubiquitination is crucial in modulating cell proliferation and aerobic glycolysis in cancer. The frequency of TP53 mutations in LUAD is approximately 50%.

View Article and Find Full Text PDF

Breast cancer is often treated with chemotherapy. However, the development of chemoresistance results in treatment failure. Long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to contribute to chemoresistance in breast cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!