Proteolysis of transmembrane molecules is an irreversible post-translational modification enabling autocrine, paracrine and endocrine signaling of many cytokines. The pro-inflammatory activities of membrane bound TNFα (pro-TNFα) strongly depend on ectodomain shedding mediated by the A Disintegrin And Metalloprotease family member ADAM17. Despite the well-documented role of ADAM17 in pro-TNFα cleavage during inflammation, little is known about its regulation. Mitogen-activated protein kinase-induced phosphorylation of the ADAM17 cytoplasmic tail has been described to be required for proper activation. To address, if pro-TNFα shedding depends on cytosolic phosphorylation we analyzed ADAM17 mutants lacking the cytoplasmic domain. ADAM17 mediated shedding of pro-TNFα was induced by PMA, Anisomycin and the phosphatase inhibitors Cantharidin and Calyculin A. Deletion of the entire cytoplasmic portion of ADAM17 abolished furin-dependent proteolytic maturation and pro-TNFα cleavage. Interestingly, we could exclude that resistance to proconvertase processing is the reason for the enzymatic inactivity of ADAM17 lacking the cytoplasmic portion as furin-resistant ADAM17 mutants rescued genetic ADAM17 deficiency after mitogen-activated protein kinase activation. Adding only 6 cytoplasmic amino acids completely restored ADAM17 maturation and shedding of pro-TNFα as well as of both TNF-receptors Finally, we showed that a pro-TNFα mutant lacking the cytoplasmic portion was also shed from the cell surface. We conclude that pro-TNFα cleavage by its major sheddase ADAM17 does not depend on cytosolic phosphorylation and/or interaction. These results have general implications on understanding the activation mechanism controlling the activity of ADAM17.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2013.10.005DOI Listing

Publication Analysis

Top Keywords

adam17
13
pro-tnfα cleavage
12
lacking cytoplasmic
12
cytoplasmic portion
12
pro-tnfα
8
mitogen-activated protein
8
cytosolic phosphorylation
8
adam17 mutants
8
shedding pro-tnfα
8
cytoplasmic
7

Similar Publications

The benefits of sleep extend beyond the nervous system. Peripheral tissues impact sleep regulation, and increased sleep is observed in response to damaging conditions, even those that selectively affect non-neuronal cells. However, the 'sleep need' signal released by stressed tissues is not known.

View Article and Find Full Text PDF

In clinical mastitis of dairy cows, the abnormal accumulation of apoptotic cells (ACs) and subsequent secondary necrosis and inflammation pose significant concerns, with macrophage-mediated efferocytosis, crucial for ACs clearance, remaining unexplored in this context. In nonruminants, MER proto-oncogene tyrosine kinase (MERTK) receptors are essential for efferocytosis and A Disintegrin and Metalloproteinase 17 (ADAM17) is thought to play a role in regulating MERTK integrity. This study aimed to delineate the in situ role of efferocytosis in clinical mastitis, with a particular focus on the interaction between MERTK and ADAM17 in bovine macrophages.

View Article and Find Full Text PDF

The increasing utilization of deep learning models in drug repositioning has proven to be highly efficient and effective. In this study, we employed an integrated deep-learning model followed by traditional drug screening approach to screen a library of FDA-approved drugs, aiming to identify novel inhibitors targeting the TNF-α converting enzyme (TACE). TACE, also known as ADAM17, plays a crucial role in the inflammatory response by converting pro-TNF-α to its active soluble form and cleaving other inflammatory mediators, making it a promising target for therapeutic intervention in diseases such as rheumatoid arthritis.

View Article and Find Full Text PDF

Background: The relationship between tumour necrosis factor (TNF) levels and disease progression is well-established. However, the impact of changes in the level of TNF hydrolase (A-disintegrin and metalloenzyme 17; ADAM17) in HIV patients remains to be fully elucidated.

Methods: Between March 1 and December 31, 2017, data were collected from 64 HIV-positive individuals in Wenzhou.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs), a heterogeneous group of cell-derived, membrane-enclosed vesicles bearing cell-specific epitopes, have been demonstrated to play a crucial role in neuronal-glial communication and the orchestration of neuroinflammatory processes. However, the existing evidence regarding their function as biomarkers and their role in the pathobiology of traumatic spinal cord injuries (tSCI), particularly in humans, is scarce.

Objective: The primary goal of this study was to investigate whether a distinct pattern of EV surface epitopes detected in the plasma of individuals suffering from spinal cord injury is indicative of tSCI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!