The energy demands of portable gas analysis system carriage during walking and running.

Ergonomics

a Department of Sport and Physical Activity , Edge Hill University, St. Helens Road , Ormskirk, Lancashire , L39 4QP , UK.

Published: August 2014

The aim of this study was to evaluate the carriage of a portable gas analyser during prolonged treadmill exercise at a variety of speeds. Ten male participants completed six trials at different speeds (4, 8 and 12 km h(- 1)) for 40 min whilst wearing the analyser (P) or where the analyser was externally supported (L). Throughout each trial, respiratory gases, heart rate (HR), perceptions of effort and energy expenditure (EE) were measured. Significantly higher EE occurred during P12 (p = 0.01) than during L12 (855.3 ± 104.3; CI = 780.7-930.0 and 801.5 ± 82.2 kcal; CI = 742.7-860.3 kcal, respectively), but not at the other speeds; despite this, perceptions of effort and HR responses were unaffected. This additional EE is likely caused by alterations to posture which increase oxygen demand. The use of such systems is unlikely to affect low-intensity tasks, but researchers should use caution when interpreting data, particularly when exercise duration exceeds 30 min and laboratory-based analysers should be used where possible.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00140139.2013.839830DOI Listing

Publication Analysis

Top Keywords

portable gas
8
perceptions effort
8
energy demands
4
demands portable
4
gas analysis
4
analysis system
4
system carriage
4
carriage walking
4
walking running
4
running aim
4

Similar Publications

This paper presents a novel rail-to-rail Class-AB operational amplifier tailored for wake-up systems in motion sensor applications. By addressing limitations in free Class-AB designs, such as large inrush current, unstable bias conditions, and area ineffiiency, the proposed design achieves a gain of 59 dB and unity gain frequency of 550 kHz driving a 5 pF load. The inrush current is reduced from 1 mA to 7 µA, increasing the battery life.

View Article and Find Full Text PDF

A Microfluidic Paper-Based Device for Monitoring Urease Activity in Saliva.

Biosensors (Basel)

January 2025

CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.

Chronic Kidney Disease (CKD) is a disorder that affects over 10% of the global population, and that would benefit from innovative methodologies that would provide early detection. Since it has been reported that there are high levels of urease in CKD patients' saliva, this sample is a promising non-invasive alternative to blood for CKD detection and monitoring. This work introduces a novel 3D µPAD for quantifying urease activity in saliva in a range of 0.

View Article and Find Full Text PDF

Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks.

View Article and Find Full Text PDF

Filamentous cyanobacteria growth assessment using fluorinated ethylene propylene microcapillaries.

MRS Bull

November 2024

Bioelectronics & Bioenergy Research Lab, Centre for Functional Ecology-Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.

Abstract: Filamentous cyanobacteria originate toxic harmful algal blooms (HABs) in aquatic ecosystems, severely impacting freshwater ecosystems and life. Despite being natural bloomers, these microorganisms are challenging to handle , due to the formation of aggregates with entangled filaments. Consequently, their precise growth dynamics, although vital to timely predict HABs, remains inaccessible.

View Article and Find Full Text PDF

Electronic nose (e-nose) systems are well known in breath analysis because they combine breath printing with advanced and intelligent machine learning (ML) algorithms. This work demonstrates development of an e-nose system comprising gas sensors exposed to six different volatile organic compounds (VOCs). The change in the voltage of the sensors was recorded and analyzed through ML algorithms to achieve selectivity and predict the VOCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!