In a previous work we have demonstrated the antimicrobial activity of ferrocenyl or phenyl derivatives of diphenyl butene series. This finding has opened a new area of applications of organometallic compounds. In order to improve these activities, we have synthesized new organic and organometallic diaryl butene compounds with different lengths of their amino chains. These new compounds, and also their ammonium salts, were tested against man pathogenic microorganisms Escherichia coli (ATCC 10536), Pseudomonas aeruginosa (ATCC 15442), Staphylococcus aureus (ATCC 6538) and Enterococcus hirae (ATCC 10541). It emerged from the tests that the Gram+ bacteria are more sensitive to the compounds than Gram-, and the compounds with 3 carbon amino chains have a better antimicrobial activity than the one having a chain of 2 or 4 carbons. The transformation of compounds to citrate salts was accompanied by a significant regression of antibacterial activity against Pseudomonas aeruginosa, for both organic and ferrocenic molecules. This resistance problem has been solved using hydrochlorides salts rather than citrates one.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795876 | PMC |
http://dx.doi.org/10.1186/2193-1801-2-508 | DOI Listing |
( ) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi-(MDR) and extensively-(XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for long-term survival Here, we report the development of antitubercular small molecules that inhibit the cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule that can bind to the heme cofactor of both enzymes.
View Article and Find Full Text PDFAmplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.
View Article and Find Full Text PDFIn this study, we conducted a thorough analysis of (RT) and (COF) extracts with varying polarities using LC-MS chemical profiling and biological tests (antioxidant, antimicrobial, enzyme inhibition, and cytotoxic effects). The highest level of total phenolic content in the ethanol extract of RT with 75.82 mg GAE/g, followed by the infusions of RT (65.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia University of Belgrade Belgrade Serbia.
(L.) Roxb. and (L.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch Islamic Azad University Semnan Iran.
Dental caries is a highly prevalent chronic condition globally. In recent years, scientists have turned to natural compounds such as plant extracts as an alternative to address concerns related to biofilm-mediated disease transmission, increasing bacterial resistance, and the adverse impacts of antibiotics. Consequently, this study investigated the antimicrobial properties of ethanolic, hydroethanolic, and aqueous extracts of L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!