Background: Kaposi's sarcoma associated-herpesvirus causes all forms of Kaposi's sarcoma, and six major subtypes have been described based on the amino acid sequences of the open reading frame K1.
Main Observation: A 71-year-old man from China, HIV negative, presented with nodules on the dorsal aspect of his toes. Biopsy confirmed the diagnosis of Kaposi's sarcoma and virology studies of his blood and saliva confirmed the presence of Kaposi's sarcoma associated-herpesvirus infection. Viral genotyping was consistent with subtype C3. Intervention has been deferred as our patient has remained clinically asymptomatic and without evident growth of his lesions over a 2-year follow up.
Conclusions: We herein report the first known case of Kaposi's sarcoma restricted to the toes caused by the viral subtype C3 in an HIV-negative patient from Harbin, China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797018 | PMC |
http://dx.doi.org/10.3315/jdcr.2013.1146 | DOI Listing |
Neoreviews
January 2025
Vascular Anomalies Center, Division of Pediatric Surgery, Children's Hospital Colorado, Aurora, Colorado.
Vascular anomalies are broadly classified into 2 categories: vascular tumors and vascular malformations. Vascular anomalies frequently present as cutaneous lesions in infants. This review summarizes vascular anomalies that most commonly present as dermatologic lesions in the neonatal period, with a focus on the clinical findings, pathophysiology and histology, relevant radiographic findings, and management of common vascular anomalies such as infantile hemangiomas, congenital hemangiomas, and Kaposiform hemangioendothelioma, along with vascular malformations, including capillary, lymphatic, venous, and arteriovenous malformations.
View Article and Find Full Text PDFJ Med Virol
January 2025
Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA.
Kaposi's sarcoma-associated herpesvirus is an oncogenic gammaherpesvirus that plays a major role in several human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The complexity of KSHV biology is reflected in the sophisticated regulation of its biphasic life cycle, consisting of a quiescent latent phase and virion-producing lytic replication. KSHV expresses coding and noncoding RNAs, including microRNAs and long noncoding RNAs, which play crucial roles in modulating viral gene expression, immune evasion, and intercellular communication.
View Article and Find Full Text PDFJ Med Virol
January 2025
Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 pandemic, has resulted in over 7 million confirmed deaths. In addition to severe respiratory and systematic symptoms, several comorbidities increase the risk of fatal outcomes. Therefore, it is essential to investigate the impact of COVID-19 on pre-existing conditions in patients, such as cancer and other infectious diseases.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States.
microRNAs (miRNAs) are central post-transcriptional gene expression regulators in healthy and diseased states. Despite decades of effort, deciphering miRNA targets remains challenging, leading to an incomplete miRNA interactome and partially elucidated miRNA functions. Here, we introduce microT-CNN, an avant-garde deep convolutional neural network model that moves the needle by integrating hundreds of tissue-matched (in-)direct experiments from 26 distinct cell types, corresponding to a unique training and evaluation set of >60 000 miRNA binding events and ~30 000 unique miRNA-gene target pairs.
View Article and Find Full Text PDFAm J Transplant
December 2024
Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!