Erg potassium currents of neonatal mouse Purkinje cells exhibit fast gating kinetics and are inhibited by mGluR1 activation.

J Neurosci

Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University of Hamburg, D-20251 Hamburg, Germany.

Published: October 2013

We investigated the subthreshold properties of an erg (ether-à-go-go-related gene) K(+) current in Purkinje cells of neonatal mice. Action potentials recorded from Purkinje cells in cerebellar slices exhibited a decreased threshold potential and increased frequency of spontaneous and repetitive activity following application of the specific erg channel blocker E-4031. Accommodation was absent before and after drug application. The erg current of these Purkinje cells activated at membrane potentials near -60 mV and exhibited fast gating kinetics. The functional importance of fast gating subthreshold erg channels in Purkinje cells was corroborated by comparing the results of action potential clamp experiments with erg1a, erg1b, erg2, and erg3 currents heterologously expressed in HEK cells. Computer simulations based on a NEURON model of Purkinje cells only reproduced the effects of the native erg current when an erg channel conductance like that of erg3 was included. Experiments with subunit-sensitive toxins (BeKm-1, APETx1) indicated that erg channels in Purkinje cells are presumably mediated by heteromeric erg1/erg3 or modified erg1 channels. Following mGluR1 activation, the native erg current was reduced by ∼70%, brought about by reduction of the maximal erg current and a shift of the activation curve to more positive potentials. The Purkinje cell erg current contributed to the sustained current component of the biphasic mGluR1 response. Activation of mGluR1 by the agonist 3,4-dihydroxyphenylglycol increased Purkinje cell excitability, similar to that induced by E-4031. The results indicated that erg currents can be modulated and may contribute to the mGluR1-induced plasticity changes in Purkinje cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618529PMC
http://dx.doi.org/10.1523/JNEUROSCI.5523-12.2013DOI Listing

Publication Analysis

Top Keywords

purkinje cells
32
erg current
20
erg
12
fast gating
12
purkinje
10
cells
9
gating kinetics
8
mglur1 activation
8
current purkinje
8
erg channel
8

Similar Publications

Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.

View Article and Find Full Text PDF

Protocol for recording physiological signals from the human cerebellum using electroencephalography.

STAR Protoc

January 2025

Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY 10032, USA. Electronic address:

As Purkinje cells of the cerebellum have a very fast firing rate, techniques with high temporal resolution are required to capture cerebellar physiology. Here, we present a protocol to record physiological signals in humans using cerebellar electroencephalography (cEEG). We describe steps for electrode placement and recording.

View Article and Find Full Text PDF

Background: Christianson syndrome (CS) is an x-linked recessive neurodevelopmental and neurodegenerative condition characterized by severe intellectual disability, cerebellar degeneration, ataxia, and epilepsy. Mutations to the gene encoding NHE6 are responsible for CS, and we recently demonstrated that a mutation to the rat gene causes a similar phenotype in the spontaneous rat model, which exhibits cerebellar degeneration with motor dysfunction. In previous work, we used the PhP.

View Article and Find Full Text PDF

Paraneoplastic cerebellar degeneration (PCD) is an inflammatory autoimmune process caused by onconeural antibodies directed against cerebellar Purkinje cells. In most cases, prognosis is poor as disease progression leads to pancerebellar dysfunction and permanent neurological damage. Through this case report, we aim to highlight the clinical presentation, diagnostic process, and therapeutic implications associated with PCD secondary to SCLC.

View Article and Find Full Text PDF

Semaphorin 3A (Sema3A) is an axon guidance molecule, which is also abundant in the adult central nervous system (CNS), particularly in perineuronal nets (PNNs). PNNs are extracellular matrix structures that restrict plasticity. The cellular sources of Sema3A in PNNs are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!