Background: L-selectin (CD62L) and β(7) integrins are important for trafficking of naive T cells under steady-state conditions. The objectives of this study were to dissect the requirements for T cell-associated CD62L and β(7) integrins during initiation, progression, and regulation of chronic colitis.
Methods: Using the T-cell transfer model, we compared colitogenic potential between T cells lacking one or both of these molecules with wild-type T cells. To assess trafficking of cells to the secondary lymphoid tissue and the gut, we performed co-homing experiments.
Results: Adoptive transfer of wild-type, CD62L(-/-) or β(7)(-/-) single-deficient T cells induced moderate to severe disease with slightly different kinetics. However, transfer of CD62L(-/-) β(7)(-/-) double-deficient (DKO) T cells produced significantly attenuated gut inflammation, which correlated with fewer T cells and reduced levels of proinflammatory cytokines in the colon lamina propria. Our subsequent experiments established that lack of colitogenic potential of these cells was due to inability of DKO T cells to home to the secondary lymphoid tissue. Furthermore, homing of in vitro-generated effector DKO T cells to the inflamed intestine was significantly impaired. Lastly, DKO regulatory T cells were ineffective at suppressing colitis induced by wild-type T cells.
Conclusions: We established that T cells can use either CD62L(-/-) or β(7)(-/-) integrins to induce chronic colitis, but lack of both abrogates their colitogenic potential. Effector T cells critically rely on β(7) integrin during their recruitment to the inflamed intestinal mucosa. Finally, regulation of intestinal inflammation by regulatory T cells requires one or both of these adhesion molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MIB.0b013e3182a8df0a | DOI Listing |
J Clin Invest
January 2025
Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, United States of America.
Although nucleoporin 98 (NUP98) fusion oncogenes often drive aggressive pediatric leukemia by altering chromatin structure and expression of HOX genes, underlying mechanisms remain elusive. Here, we report that a Hoxb-associated lncRNA HoxBlinc was aberrantly activated in NUP98-PHF23 fusion-driven leukemias. HoxBlinc chromatin occupancies led to elevated MLL1 recruitment and aberrant homeotic topologically associated domains (TADs) that enhanced chromatin accessibilities and activated homeotic/hematopoietic oncogenes.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Metabolic reprogramming shapes tumor microenvironment (TME) and may lead to immunotherapy resistance in pancreatic ductal adenocarcinoma (PDAC). Elucidating the impact of pancreatic cancer cell metabolism in the TME is essential to therapeutic interventions. "Immune cold" PDAC is characterized by elevated lactate levels resulting from tumor cell metabolism, abundance of pro-tumor macrophages, and reduced cytotoxic T cell in the TME.
View Article and Find Full Text PDFJ Am Soc Nephrol
January 2025
Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.
Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.
Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).
Brief Bioinform
November 2024
School of Artificial Intelligence, Jilin University, Qianjin Street 2699, 130010 Changchun, China.
Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA transcripts at the single-molecule resolution. The subcellular localization of RNA molecules plays a crucial role in the compartmentalization-dependent regulation of genes within individual cells. Understanding the intracellular spatial distribution of RNA for a particular cell type thus not only improves the characterization of cell identity but also is of paramount importance in elucidating unique subcellular regulatory mechanisms specific to the cell type.
View Article and Find Full Text PDFPulmonology
December 2025
State Key Laboratory of Respiratory Disease, Joint International Research Laboratory of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University. Guangzhou, Guangdong, P.R.China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!