AI Article Synopsis

Article Abstract

The faradaic efficiency of CO2 electroreduction is significantly affected by the thickness of Pd nanoshells on Au cores. The ratio of hydrogen evolution to CO2 reduction was determined by differential electrochemical mass spectrometry. Decreasing the Pd shell thickness from 10 to 1 nm leads to a twofold increase in faradaic efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cc46543hDOI Listing

Publication Analysis

Top Keywords

co2 electroreduction
8
faradaic efficiency
8
tuning co2
4
electroreduction efficiency
4
efficiency shells
4
shells nanocores
4
nanocores faradaic
4
efficiency co2
4
electroreduction thickness
4
thickness nanoshells
4

Similar Publications

Coordinatively unsaturated copper (Cu) has been demonstrated to be effective for electrifying CO reduction into C products by adjusting the coupling of C-C intermediates. Nevertheless, the intuitive impacts of ultralow coordination Cu sites on C products are scarcely elucidated due to the lack of synthetic recipes for Cu with low coordination numbers and its vulnerability to aggregation under reductive potentials. Herein, computational predictions revealed that Cu sites with higher levels of coordinative unsaturation favored the adsorption of C and C intermediates.

View Article and Find Full Text PDF

Modulating Electronic Density of Single-Atom Ni Center by Heteroatoms for Efficient CO Electroreduction.

Small

January 2025

CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

Single-atom catalysts (SACs) with unique geometric and electronic configurations have triggered great interest in many important reactions. However, controllably modulating the electronic structure of metal centers to enhance catalytic performance remains a challenge. Here, the electronic structure of Ni centers over Ni-NC SACs by introducing electron-rich phosphorus or electron-deficient boron for electrochemical CO reduction (CORR) is systematically tailored.

View Article and Find Full Text PDF

The electrochemical reduction of CO (CORR) to value-added products has garnered significant interest as a sustainable solution to mitigate CO emissions and harness renewable energy sources. Among CORR products, formic acid/formate (HCOOH/HCOO) is particularly attractive due to its industrial relevance, high energy density, and potential candidate as a liquid hydrogen carrier. This study investigates the influence of the initial oxidation state of tin on CORR performance using nanostructured SnO catalysts.

View Article and Find Full Text PDF

Electrocatalytic CO-to-CO conversion with a high CO Faradaic efficiency (FE) at low overpotentials and industrial-level current densities is highly desirable but a huge challenge over non-noble metal catalysts. Herein, graphitic N-rich porous carbons supporting atomically dispersed nickel (NiN-O sites with an axial oxygen) were synthesized (denoted as O-Ni-N-GC) and applied as the cathode catalyst in a CORR flow cell. O-Ni-N-GC showed excellent selectivity with a FE over 92% at low overpotentials ranging from 17 to 60 mV, and over 99% at 80 mV.

View Article and Find Full Text PDF

Switching CO2 Electroreduction toward C2+ Products and CH4 by Regulate the Protonation and Dimerization in Platinum/Copper Catalysts.

Angew Chem Int Ed Engl

January 2025

Beijing Institute of Technology, Research Center of Materials Science, School of Materials Science and Engineering, No.5 South Street of Zhongguancun, Haidian District, 100081, Beijing, CHINA.

Copper (Cu)-based catalysts exhibit distinctive performance in the electrochemical CO2 reduction reaction (CO2RR) with complex mechanism and sophisticated types of products. The management of key intermediates *CO and *H is a necessary factor for achieving high product selectivity, but lack of efficient and versatile strategies. Herein, we designed Pt modified Cu catalysts to effectively modulate the competitive coverage of those intermediates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!