Background: Functional magnetic resonance imaging (fMRI) is a technique able to localize neural activity in the brain by detecting associated changes in blood flow. It is an essential tool for studying human functional neuroanatomy including the auditory system. There are only a few studies, however, using fMRI to study canine brain functions. In the current study ten anesthetized dogs were scanned during auditory stimulation. Two functional sequences, each in combination with a suitable stimulation paradigm, were used in each subject. Sequence 1 provided periods of silence during which acoustic stimuli could be presented unmasked by scanner noise (sparse temporal sampling) whereas in sequence 2 the scanner noise was present throughout the entire session (continuous imaging). The results obtained with the two different functional sequences were compared.
Results: This study shows that with the proper experimental setup it is possible to detect neural activity in the auditory system of dogs. In contrast to human fMRI studies the strongest activity was found in the subcortical parts of the auditory pathways. Especially sequence 1 showed a high reliability in detecting activated voxels in brain regions associated with the auditory system.
Conclusion: These results indicate that fMRI is applicable for studying the canine auditory system and could become an additional method for the clinical evaluation of the auditory function of dogs. Additionally, fMRI is an interesting technique for future studies concerned with canine functional neuroanatomy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854503 | PMC |
http://dx.doi.org/10.1186/1746-6148-9-210 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!