AI Article Synopsis

  • Endocannabinoids and cannabinoids interact with specific receptors (CB1, CB2, TRPV1, GPR55), influencing immune responses in conditions like multiple sclerosis (MS).
  • Research shows that genetic background significantly affects disease severity in experimental autoimmune encephalomyelitis (EAE) models, with different outcomes observed in various mouse strains.
  • The findings suggest that while THC can suppress immune activity through CB1, non-psychoactive cannabis has limited effects on the immune system in MS, raising questions about its therapeutic potential.

Article Abstract

Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim)) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen)) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim) mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some transgenic/gene knockout and other studies on low-EAE susceptibility backgrounds with inconsistent disease course and susceptibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793915PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076907PLOS

Publication Analysis

Top Keywords

knockout mice
20
cb2 receptor
12
receptor
11
genetic background
8
knockout
8
gene knockout
8
experimental autoimmune
8
autoimmune encephalomyelitis
8
models multiple
8
multiple sclerosis
8

Similar Publications

Long non-coding RNA fine-tunes bone homeostasis and repair by orchestrating cellular crosstalk and β-catenin-OPG/Jagged1 pathway.

Elife

December 2024

Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States.

The IncRNA was initially believed to be dispensable for physiology due to the lack of observable phenotypes in knockout (KO) mice. However, our study challenges this conclusion. We found that both KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis.

View Article and Find Full Text PDF

Zbtb7b defines a compensatory mechanism in MASLD-related HCC progression by suppressing H19-mediated hepatic lipid deposition.

Physiol Rep

December 2024

Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Hepatocellular carcinoma (HCC) is a widely prevalent type of primary liver cancer. However, strategies for pretumor intervention are still limited. In this study, a liver-specific Zbtb7b knockout mouse model was used to evaluate the role of Zbtb7b in metabolic dysfunction-associated steatotic liver disease (MASLD)-related HCC development.

View Article and Find Full Text PDF

Introduction And Aims: Mitochondrial myopathies are rare genetic disorders for which no effective treatment exists. We previously showed that the pharmacological cyclophilin inhibitor cyclosporine A (CsA) extends the lifespan of fast-twitch skeletal muscle-specific mitochondrial transcription factor A knockout (Tfam KO) mice, lacking the ability to transcribe mitochondrial DNA and displaying lethal mitochondrial myopathy. Our present aim was to assess whether the positive effect of CsA was associated with improved in vivo mitochondrial energy production.

View Article and Find Full Text PDF

Two live attenuated vaccines (LAVs), LMA and LMP, were evaluated alone or in combination with a trivalent adenoviral vector-based vaccine (Ad5-YFV) for their efficacy and immune responses in wild type (WT) and interferon gamma (IFNγ) knockout (KO) mice in a C57BL/6 background. While LMA and LMP are triple deletion mutants of CO92 strain, Ad5-YFV incorporates three protective plague immunogens. An impressive 80-100% protection was observed in all vaccinated animals against highly lethal intranasal challenge doses of parental CO92.

View Article and Find Full Text PDF

A growing number of therapies are being developed to target the cell cycle machinery for the treatment of cancer and other human diseases. Consequently, a greater understanding of the factors regulating cell cycle progression becomes essential to help enhance the response to these new therapies. Here, using data from the Cancer Dependency Map, we identified the poorly-studied factor FAM53C as a new regulator of cell cycle progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!