Ca2+-dependent protein phosphorylation has been detected in numerous tissues and may mediate some of the effects of hormones and other extracellular stimuli on cell function. In this paper we demonstrate that a Ca2+/calmodulin-dependent protein kinase similar to the enzyme previously purified and characterized from rat brain is present in PC12, a rat pheochromocytoma cell line. We show that Ca2+ influx elicited by various forms of cell stimulation leads to increased 32P incorporation into tyrosine hydroxylase (TH), a major phosphoprotein in these cells. Several other unidentified proteins are either phosphorylated or dephosphorylated as a result of Ca2+ influx. Acetylcholine stimulates TH phosphorylation by activation of nicotinic receptors. K+-induced depolarization stimulates TH phosphorylation in a Ca2+-dependent manner, presumably by opening voltage-dependent Ca2+ channels. Ca2+ influx that results from the direct effects of the ionophore A23187 also leads to TH phosphorylation. Phosphorylation of TH is accompanied by an activation of the enzyme. These Ca2+-dependent effects are independent of cyclic AMP and thus implicate a Ca2+-dependent protein kinase as a mediator of both hormonal and electrical stimulation of PC12 cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113931PMC
http://dx.doi.org/10.1083/jcb.101.4.1182DOI Listing

Publication Analysis

Top Keywords

ca2+ influx
12
tyrosine hydroxylase
8
pc12 cells
8
ca2+-dependent protein
8
protein kinase
8
stimulates phosphorylation
8
ca2+-dependent
5
phosphorylation
5
ca2+-dependent phosphorylation
4
phosphorylation tyrosine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!