Purpose: Amacrine cell neurite patterning has been extensively studied in vivo, and more than 30 subpopulations with varied morphologies have been identified in the mammalian retina. It is not known, however, whether the complex amacrine cell morphology is determined intrinsically, is signaled by extrinsic cues, or both.
Methods: Here we purified rat amacrine cell subpopulations away from their retinal neighbors and glial-derived factors to ask questions about their intrinsic neurite growth ability. In defined medium strongly trophic for amacrine cells in vitro, we characterized survival and neurite growth of amacrine cell subpopulations defined by expression of specific markers.
Results: We found that a series of amacrine cell subtype markers are developmentally regulated, turning on through early postnatal development. Subtype marker expression was observed in similar fractions of cultured amacrine cells as was observed in vivo, and was maintained with time in culture. Overall, amacrine cell neurite growth followed principles very similar to those in postnatal retinal ganglion cells, but embryonic retinal ganglion cells demonstrated different features, relating to their rapid axon growth. Surprisingly, the three subpopulations of amacrine cells studied in vitro recapitulated quantitatively and qualitatively the varied morphologies they have in vivo.
Conclusions: Our data suggest that cultured amacrine cells maintain intrinsic fidelity to their identified in vivo subtypes, and furthermore, that cell-autonomous, intrinsic factors contribute to the regulation of neurite patterning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832218 | PMC |
http://dx.doi.org/10.1167/iovs.13-12691 | DOI Listing |
Function (Oxf)
December 2024
Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea.
During retinal visual processing, rod bipolar cells (RBC) transfer scotopic signals from rods to AII amacrine cells as second-order neurons. Elucidation of the RBC's excitation/inhibition is essential for understanding the visual signal transmission. Excitation mechanisms via mGluR6 and voltage-gated Ca2+ channels in the RBCs and GABAergic inhibitory synaptic inputs have been studied in previous studies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Committee on Computational Neuroscience, Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637.
Everything that the brain sees must first be encoded by the retina, which maintains a reliable representation of the visual world in many different, complex natural scenes while also adapting to stimulus changes. This study quantifies whether and how the brain selectively encodes stimulus features about scene identity in complex naturalistic environments. While a wealth of previous work has dug into the static and dynamic features of the population code in retinal ganglion cells (RGCs), less is known about how populations form both flexible and reliable encoding in natural moving scenes.
View Article and Find Full Text PDFFront Neurosci
November 2024
Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States.
Introduction: Considering the significant role played by both intrinsic and extrinsic electric fields in the growth and maturation of the central nervous system, the impact of short exposure to external electric fields on the development and differentiation of retinal organoids was investigated.
Methods: Retinal organoids derived from human embryonic stem cells were used at day 80, a key stage in their differentiation. A single 60-minute exposure to a biphasic electrical field was administered to assess its influence on retinal cell populations and maturation markers.
Through decades of research, we have gained a comprehensive understanding of the protein complexes underlying function and regulation of chemical synapses in the nervous system. Despite the identification of key molecules such as ZO-1 or CaMKII, we currently lack a similar level of insight into the electrical synapse proteome. With the advancement of BioID as a tool for proteomics, it has become possible to identify complex interactomes of a given protein of interest by combining enzymatic biotinylation with subsequent streptavidin affinity capture.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Neuroscience, Yale University, New Haven, CT 06511.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!