The many ways parasites can impact their host species have been the focus of intense study using a range of approaches. A particularly promising but under-used method in this context is experimental evolution, because it allows targeted manipulation of known populations exposed to contrasting conditions. The strong potential of applying this method to the study of insect hosts and their associated parasites is demonstrated by the few available long-term experiments where insects have been exposed to parasites. In this review, we summarize these studies, which have delivered valuable insights into the evolution of resistance in response to parasite pressure, the underlying mechanisms, as well as correlated genetic responses. We further assess findings from relevant artificial selection studies in the interrelated contexts of immunity, life history, and reproduction. In addition, we discuss a number of well-studied Tribolium castaneum-Nosema whitei coevolution experiments in more detail and provide suggestions for research. Specifically, we suggest that future experiments should also be performed using nonmodel hosts and should incorporate contrasting experimental conditions, such as population sizes or environments. Finally, we expect that adding a third partner, for example, a second parasite or symbiont, to a host-parasite system could strongly impact (co)evolutionary dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1744-7917.12064 | DOI Listing |
Viruses
January 2025
Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina.
The European grapevine moth () poses a significant threat to vineyards worldwide, causing extensive economic losses. While its ecological interactions and control strategies have been well studied, its associated viral diversity remains unexplored. Here, we employ high-throughput sequencing data mining to comprehensively characterize the virome, revealing novel and diverse RNA viruses.
View Article and Find Full Text PDFViruses
December 2024
Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia.
Human seasonal coronaviruses (hCoVs) are a group of viruses that affect the upper respiratory tract. While seasonal patterns and the annual variability of predominant hCoV species are well-documented, their genetic and species diversity in St. Petersburg and across Russia remains largely unexplored.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico.
Alzheimer's disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently associated with significant adverse effects. Faced with this challenge and in line with advances in the understanding of the pathophysiology of this neurodegenerative condition, various innovative therapeutic strategies have been explored.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Institute for Polymers Composites and Biomaterials, Italian National Research Council, Piazzale Enrico Fermi, 80055 Portici, NA, Italy.
This work introduces an experimental approach focused on investigating fatigue-driven debonding in a composite structure designed to simulate the complexity of a typical aeronautical panel. The debonding is placed between the skin and the stringer, and the structure has been tested under fatigue compression conditions. Using lock-in thermography, the damage evolution during fatigue cycles has been detailed monitored.
View Article and Find Full Text PDFPathogens
January 2025
National Reference Laboratory (NRL) for Swine Fever, Istituto Zooprofilattico Sperimentale dell' Umbria e delle Marche "Togo Rosati", 06126 Perugia, Italy.
African swine fever (ASF), characterized by high mortality rates in infected animals, remains a significant global veterinary and economic concern, due to the widespread distribution of ASF virus (ASFV) genotype II across five continents. In this study, ASFV strains collected in Italy during 2022-2023 from two geographical clusters, North-West (Alessandria) and Calabria, were fully sequenced. In addition, an in vivo experiment in pigs was performed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!