The determination of the electronic states of single-walled carbon nanotubes (SWNTs) with a specific chirality has been a central issue in the science of SWNTs. Here we present the empirical equations with fitting parameters for the determination of the reduction and oxidation potentials of SWNTs for a wide range of diameters and chiral angles. In these equations, a distinct chirality family dependence of the reduction potentials is observed, while the oxidation potentials show a simple diameter dependence nearly proportional to the inversed nanotube diameter. Based on observations of the asymmetric chirality dependence between the reduction and oxidation potentials, the Fermi levels of the SWNTs were revealed to have a definite chirality family dependence, which indicates that the work functions of the SWNTs with small diameters deviate from the values for the large diameter SWNTs and graphene. We also performed quantum chemical calculations to compare the experiment to the calculations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797431PMC
http://dx.doi.org/10.1038/srep02959DOI Listing

Publication Analysis

Top Keywords

oxidation potentials
12
single-walled carbon
8
carbon nanotubes
8
specific chirality
8
reduction oxidation
8
chirality family
8
family dependence
8
dependence reduction
8
swnts
6
potentials
5

Similar Publications

Peri-implant diseases, such as peri-implantitis, affect up to 47% of dental implant recipients, primarily due to biofilm formation. Current decontamination methods vary in efficacy, prompting interest in polymeric nanoparticles (NPs) for their antimicrobial and protein-specific cleaning properties. This study evaluated the efficacy of polymeric nanoparticles (NPs) in decontaminating titanium dental implants by removing proteinaceous pellicle layers and resisting recontamination.

View Article and Find Full Text PDF

Parkinson's Disease (PD) is a neurodegenerative disorder characterized by the pro-gressive loss of dopaminergic neurons in the substantia nigra, leading to motor dysfunction and non-motor symptoms. Current treatments primarily offer symptomatic relief without halt-ing disease progression. This has driven the exploration of natural compounds with neuropro-tective properties.

View Article and Find Full Text PDF

Two-dimensional (2D) hybrid materials, particularly those based on boron nitride (BN) and graphene oxide (GO), have attracted significant attention for energy applications owing to their distinct structural and electronic properties. BN/GO composites uniquely combine the mechanical strength, thermal stability and electrical insulation of BN with the high conductivity and flexibility of GO, creating advanced materials ideal for the fabrication of batteries, supercapacitors and fuel cells. These hybrids offer synergistic effects, enhanced charge transport, increased surface area, and improved chemical stability, making them promising candidates for high-performance energy systems.

View Article and Find Full Text PDF

Biocatalytic Strategies for Nitration Reactions.

JACS Au

January 2025

Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

Nitro compounds are key synthetic intermediates used as enabling tools in synthesis and found in a large range of essential compounds, including pharmaceuticals, pesticides, and various organic dyes. Despite recent methodological developments, the industrial preparation of nitro compounds still suffers from harsh reaction conditions, along with poor selectivity and a problematic environmental footprint. Although biological enzymatic methods exist, mild approaches for bionitration are still underexplored.

View Article and Find Full Text PDF

The total oxidation of -hexane, a hazardous volatile organic compound (VOC) emitted by the pharmaceutical industry, presents a significant environmental challenge due to limited catalyst activity at low temperatures and poor stability at high temperatures. Here, we present a novel approach that overcomes these limitations by employing single-atom Ag/MnO catalysts coupled with nonthermal plasma (NTP). This strategy achieves exceptional performance in -hexane oxidation at low temperatures, demonstrating 96.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!