Double asymmetric induction has been employed as a tool to optimise pyrazolidinone-derived organocatalysts for the asymmetric iminium ion catalysed Diels-Alder reaction. Mechanistic studies revealed a superior hydrazide catalyst deriving from methanolysis of the chiral pyrazolidinone precursor. This catalyst displays unusually high endo diastereoselectivity and good enantioselectivity with a range of β-arylenals and cyclic dienes at catalyst loadings as low as 1 mol%.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3ob41719kDOI Listing

Publication Analysis

Top Keywords

asymmetric iminium
8
iminium ion
8
development highly
4
highly active
4
active acyclic
4
acyclic chiral
4
chiral hydrazides
4
hydrazides asymmetric
4
ion organocatalysis
4
organocatalysis double
4

Similar Publications

Recent advances in organocatalytic atroposelective reactions.

Beilstein J Org Chem

January 2025

Department of Organic Chemistry, Faculty of Natural Science, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia.

Axial chirality is present in a variety of naturally occurring compounds, and is becoming increasingly relevant also in medicine. Many axially chiral compounds are important as catalysts in asymmetric catalysis or have chiroptical properties. This review overviews recent progress in the synthesis of axially chiral compounds via asymmetric organocatalysis.

View Article and Find Full Text PDF

Total syntheses of the parvistemoline alkaloids enabled by stereocontrolled Ir/Pd-catalyzed allylic alkylation.

Nat Commun

December 2024

Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.

The functionalized polycycle with densely contiguous tertiary stereocenters is a formidable challenge in synthesizing the parvistemoline family of Stemona alkaloids. We herein report their catalytic, asymmetric total syntheses in 13-14 steps from commercially available 2-(methoxycarbonyl)-pyrrole, featuring the development and deployment of an Ir/Pd-synergistically-catalyzed allylation of α-non-substituted keto esters with secondary aryl-substituted alcohols, stereodivergently accessible to four stereoisomers. Using chiral Pd-enolate and Ir π-allyl complex under neutral conditions, no epimerization occurs.

View Article and Find Full Text PDF

Asymmetric cyclopropanation an electro-organocatalytic cascade.

Chem Commun (Camb)

November 2024

Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.

We report an iminium ion-promoted, asymmetric synthesis of cyclopropanes an electrocatalytic, iodine-mediated ring closure. The mild, controlled electrochemical generation of electrophilic iodine species in catalytic quantities prevents organocatalyst deactivation, while also eliminating the need for halogenating reagents, thus simplifying traditional synthetic approaches.

View Article and Find Full Text PDF
Article Synopsis
  • * The study presents a novel method using dual photoredox/nickel catalysis to create tertiary alkylamines from organohalides and secondary alkylamines, via α-amino radicals and iminium ions.
  • * This approach also allows for complex four-component reactions and can produce enantioenriched compounds, providing a promising route for synthesizing diverse tertiary amines.
View Article and Find Full Text PDF

The asymmetric unit of the title salt, CHN ·CHOS, comprises two 1,3-di-hydro-2-benzimidazol-2-iminium cations and two 2-hy-droxy-5-sulfobenzoate anions (' = 2). In the crystal, the mol-ecules inter-act through N-H⋯O, O-H⋯O hydrogen bonds and C-O⋯π contacts. The hydrogen-bonding inter-actions lead to the formation of layers parallel to (01).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!