Synthesis, characterization, and reversible hydrogen sorption study of sodium-doped fullerene.

Nanotechnology

Savannah River National Laboratory, Clean Energy Directorate, 301 Gateways Dr., Aiken, SC 29808, USA.

Published: November 2013

Herein is presented a novel, straightforward route to the synthesis of an alkali metal-doped fullerene as well as a detailed account of its reversible and enhanced hydrogen sorption properties in comparison to pure C60. This work demonstrates that a reaction of sodium hydride with fullerene (C60) results in the formation of a sodium-doped fullerene capable of reversible hydrogen sorption via a chemisorption mechanism. This material not only demonstrated reversible hydrogen storage over several cycles, it also showed the ability to reabsorb over three times the amount of hydrogen (relative to the hydrogen content of NaH) under optimized conditions. The sodium-doped fullerene was hydrogenated on a pressure composition temperature (PCT) instrument at 275 °C while under 100 bar of hydrogen pressure. The hydrogen desorption behavior of this sodium-doped fullerene hydride was observed over a temperature range up to 375 °C on the PCT and up to 550 °C on the thermogravimetric analysis (TGA). Powder x-ray diffraction verifies the identity of this material as being Na6C60. Characterization of this material by thermal decomposition analysis (e.g. PCT and TGA methods), as well as FT-IR and mass spectrometry, indicates that the hydrogen sorption activity of this material is due to the reversible formation of a hydrogenated fullerene (fullerane). However, the reversible formation of fullerane was found to be greatly enhanced by the presence of sodium. It was also demonstrated that the addition of a catalytic amount of titanium (via TiO2 or Ti(OBu)4) further enhances the hydrogen sorption process of the sodium-doped fullerene material.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/24/45/455601DOI Listing

Publication Analysis

Top Keywords

hydrogen sorption
20
sodium-doped fullerene
20
reversible hydrogen
12
hydrogen
10
fullerene
8
reversible formation
8
reversible
6
sorption
5
sodium-doped
5
material
5

Similar Publications

2D and 3D porous coordination networks (PCNs) as exemplified by metal-organic frameworks, MOFs, have garnered interest for their potential utility as sorbents for molecular separations and storage. The inherent modularity of PCNs has enabled the development of crystal engineering strategies for systematic fine-tuning of pore size and chemistry in families of related PCNs. The same cannot be said about one-dimensional (1D) coordination polymers, CPs, which are understudied with respect to porosity.

View Article and Find Full Text PDF

Military bases and airports are often contaminated by per- and polyfluoroalkyl substances (PFAS) due to the repeated use of aqueous film forming foams (AFFFs) from decades of training exercises, equipment testing, and extinguishing of fuel- and solvent-based fires. Pump-and-treat systems combined with sorption processes are common ex situ remediation strategies; however, they can be expensive and may require decades of operation, particularly at sites where long-term diffusion and desorption of contaminants are the primary release processes. Alternatively, in situ chemical oxidation is an effective remediation strategy in which oxidants (e.

View Article and Find Full Text PDF

Zeolite-like algal biochar nanoparticles for enhanced antibiotics removal: Sorption mechanisms and theoretical calculations.

Colloids Surf B Biointerfaces

December 2024

National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.

In the study, Sargassum horneri (S. horneri) was used to create a novel zeolite-like algal biochar (KSBC). KSBC with doping of N, O, S, Al, and Si, displayed zeolite-like properties, including well-developed porosity, a high specific surface area (1137.

View Article and Find Full Text PDF

Nanoporous metals have unique potentials for energy applications with a high surface area despite the percolating structure. Yet, a highly corrosive environment is required for the synthesis of porous metals with conventional dealloying methods, limiting the large-scale fabrication of porous structures for reactive metals. In this study, we synthesize a highly reactive Mg nanoporous system through a facile organic solution-based approach without any harsh etching.

View Article and Find Full Text PDF

Microencapsulation of Pickering nanoemulsions containing walnut oil stabilized using soy protein-curcumin composite nanoparticles: Fabrication and evaluation of a novel plant-based milk substitute.

Food Chem

December 2024

School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China. Electronic address:

Plant protein-stabilized Pickering nanoemulsions show potential as plant-based milk substitutes; however, their stability is challenged by mechanical stress during transportation and oxidative deterioration during storage. Herein, soybean isolate protein-curcumin composite nanoparticle (SPI-Cur-NPs)-stabilized Pickering nanoemulsions were converted into microcapsule powders via spray-drying with maltodextrin (MD), trehalose anhydrous (TA), and inulin (IN) as wall materials. Robust intermolecular hydrogen bonds and an amorphous structure were formed using composite wall materials, reducing microcapsule surface fissures while improving encapsulation rate (92.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!