Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This is a study on the role of tuberous sclerosis complex1 (TSC1) mutation and mTOR activation in endothelial cells during angiogenic and embryonic development. Past studies had shown that Tsc1/Tsc2 mutant genes lead to overactivation of mTOR in the regulating pathways in developing fetus. We used conditional Cre-loxp gene knockout approach to delete Tsc1 in mice's endothelial cells in our experimental models. Similarly, activation of mTOR signaling in endothelial cells of these embryos (Tie2-Cre/Tsc1(-/-)) was found. Majority of Tie2-Cre/Tsc1(-/-) embryos died at embryonic day 14.5 in utero. Cardiovascular defects, subcutaneous edema and hemorrhage were present among them. Whole-mount immunostaining in these embryos revealed a disorganized vascular network, defective sprouting of vessels in yolk sac and thickening of the labyrinth layer in the placenta. A thinner ventricular wall with disorganized trabeculae was present in the hearts of Tie2-Cre/Tsc1(-/-) embryos. Endothelial cells in Tsc1-deficient mice showed defective mitochondrial and endoplasmic reticular morphology, but no significant change was observed in cell junctions. The mutant embryos displayed significantly reduced cell proliferation, increased apoptosis and disturbed expression of angiogenic factors. A cohort of mice was treated prenatally with mTOR inhibitor rapamycin. The offspring of these mutant mice survived up to 22 days after birth. It was concluded that physiological TSC1-mTOR signaling in endothelial cells is crucial for vascular development and embryogenesis. We postulated that disruption of normal angiogenic pathways through hyperactive mTOR signaling maybe the mechanism that lead to deranged vascular pathogenesis in the tuberous sclerosis complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddt456 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!