Nucleotidic polymorphisms were identified in fructan exohydrolases genes which are statistically associated with enhanced susceptibility to post-harvest inulin depolymerization. Industrial chicory (Cichorium intybus L.) root is the main commercial source of inulin, a linear fructose polymer used as dietary fiber. Post-harvest, inulin is depolymerized into fructose which drastically increases processing cost. To identify genetic variations associated with enhanced susceptibility to post-harvest inulin depolymerization and related free sugars content increase, we used a candidate-gene approach focused on inulin and sucrose synthesis and degradation genes, all members of the family 32 of glycoside hydrolases (GH32). Polymorphism in these genes was first investigated by carrying out EcoTILLING on two groups of chicory breeding lines exhibiting contrasted response to post-harvest inulin depolymerization. This allowed the identification of polymorphisms significantly associated with depolymerization in three fructan exohydrolase genes (FEH). This association was confirmed on a wider panel of 116 unrelated families in which the FEH polymorphism explained 35 % of the post-harvest variance for inulin content, 36 % of variance for sucrose content, 18 % for inulin degree of polymerization, 23 % for free fructose content and 22 % for free glucose content. These polymorphisms were associated with significant post-harvest changes of inulin content, inulin chain length and free sugars content.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-013-2206-6DOI Listing

Publication Analysis

Top Keywords

post-harvest inulin
20
inulin depolymerization
16
associated enhanced
12
inulin
11
genes statistically
8
statistically associated
8
enhanced susceptibility
8
susceptibility post-harvest
8
free sugars
8
sugars content
8

Similar Publications

Background: Chrysanthemi Flos is a traditional Chinese medicine with a long history of medicinal use. Prior research suggests that the intrinsic composition of Chrysanthemi Flos is affected by shade-drying and oven-drying methods. Nevertheless, the effects of these methods on the proteins and metabolites of Chrysanthemi Flos have not been extensively studied.

View Article and Find Full Text PDF

Revalorization of degraded maguey pulquero substrate for germination.

Curr Res Microb Sci

September 2024

Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala, 43830, Hidalgo, Mexico.

The bagasse of (maguey pulquero) is a residue generated during the exploitation of the plant to obtain pulque, inulin, honey, etc. Due to its chemical composition, it can be used for the cultivation of fungi of the genus and the subsequent use of the degraded material "degraded substrate (DS)" as a support for the germination of vegetables. The objective of the study was to characterize the bagasse of maguey pulquero biodegraded by as a new perspective in its value chain, and subsequent use for the germination of (tomato).

View Article and Find Full Text PDF

World-wide, pathogenic fungi such as Botrytis cinerea cause tremendous yield losses in terms of food production and post-harvest food decay. Many fungi produce inulin-type oligosaccharides (IOSs) from inulin through endo-inulinases which typically show a two domain structure. B.

View Article and Find Full Text PDF

Shelf-Life Stability of Ready-to-Use Green Rooibos Iced Tea Powder-Assessment of Physical, Chemical, and Sensory Properties.

Molecules

August 2021

Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council (Infruitec-Nietvoorbij), Private Bag X5026, Stellenbosch 7599, South Africa.

Green rooibos extract (GRE), shown to improve hyperglycemia and HDL/LDL blood cholesterol, has potential as a nutraceutical beverage ingredient. The main bioactive compound of the extract is aspalathin, a -glucosyl dihydrochalcone. The study aimed to determine the effect of common iced tea ingredients (citric acid, ascorbic acid, and xylitol) on the stability of GRE, microencapsulated with inulin for production of a powdered beverage.

View Article and Find Full Text PDF

Phenolic and physicochemical stability of a functional beverage powder mixture during storage: effect of the microencapsulant inulin and food ingredients.

J Sci Food Agric

June 2018

Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa.

Background: The need for a convenience herbal iced tea product with reduced kilojoules merited investigation of the shelf-life of powder mixtures containing a green Cyclopia subternata Vogel (honeybush) extract with proven blood glucose-lowering activity and alternative sweetener mixture.

Results: Prior to long-term storage testing, the wettability of powder mixtures containing food ingredients and the compatibility of their components were confirmed using the static sessile drop method and isothermal microcalorimetry, respectively. The powders packed in semi-sealed containers remained stable during storage at 25 °C/60% relative humidity (RH) for 6 months, except for small losses of specific phenolic compounds, namely mangiferin, isomangiferin, 3-β-d-glucopyranosyliriflophenone, vicenin-2 and 3',5'-di-β-d-glucopyranosylphloretin, especially when both citric acid and ascorbic acid were present.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!