Kallikreins (KLKs) are a family of 15 secreted serine proteases with emerging roles in neurologic diseases. To illuminate their contributions to the pathophysiology of spinal cord injury (SCI), we evaluated acute through chronic changes in the immunohistochemical appearance of 6 KLKs (KLK1, KLK5, KLK6, KLK7, KLK8, and KLK9) in postmortem human traumatic SCI cases, quantified their RNA expression levels in experimental murine SCI, and assessed the impact of recombinant forms of each enzyme toward murine cortical neurons in vitro. Temporally and spatially distinct changes in KLK expression were observed with partially overlapping patterns between human and murine SCI, including peak elevations (or reductions) during the acute and subacute periods. Kallikrein 9 showed the most marked changes and remained chronically elevated. Importantly, a subset of KLKs (KLK1, KLK5, KLK6, KLK7, and KLK9) were neurotoxic toward primary neurons in vitro. Kallikrein immunoreactivity was also observed in association with swollen axons and retraction bulbs in the human SCI cases examined. Together, these findings demonstrate that elevated levels of a significant subset of KLKs are positioned to contribute to neurodegenerative changes in cases of CNS trauma and disease and, therefore, represent new potential targets for the development of neuroprotective strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097185 | PMC |
http://dx.doi.org/10.1097/NEN.0000000000000007 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.
View Article and Find Full Text PDFBMC Med Educ
January 2025
Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
Introduction: Ultrasound is important in heart diagnostics, yet implementing effective cardiac ultrasound requires training. While current strategies incorporate digital learning and ultrasound simulators, the effectiveness of these simulators for learning remains uncertain. This study evaluates the effectiveness of simulator-based versus human-based training in Focused Assessed with Transthoracic Echocardiography (FATE).
View Article and Find Full Text PDFBMC Neurol
January 2025
Faculty of Medicine, Department of Neurology, Al-Quds University, Jerusalem, Palestine.
Background: Vanishing white matter disease (VWMD) is a rare autosomal recessive leukoencephalopathy. It is typified by a gradual loss of white matter in the brain and spinal cord, which results in impairments in vision and hearing, cerebellar ataxia, muscular weakness, stiffness, seizures, and dysarthria cogitative decline. Many reports involve minors.
View Article and Find Full Text PDFJ Pediatr Urol
January 2025
Department of Women and Children's Health, School of Life Course Sciences, Kings College London, London, UK; Children's Bladder Service, Evelina London Children's Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
Introduction: The Mirabegron-anticholinergic (MAC) combination has proven effective as a step-up strategy in managing paediatric neurogenic bladder following anticholinergic medication and botulinum toxin (BTX) therapy. This study assesses the long-term efficacy of MAC in children with neurogenic bladder.
Patients And Methods: A retrospective chart review was conducted from 2015 to 2023, including consecutive paediatric patients receiving Mirabegron (25/50 mg) with an anticholinergic agent (solifenacin 16, tolterodine 7, oxybutynin 7, trospium 1).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!