Yarrowia lipolytica and Kluyveromyces lactis occur as part of Stilton cheese microflora yet are not controlled during production. This study investigated the influence of their inoculum concentration on aroma production. Models of Y. lipolytica and K. lactis, with Penicillium roqueforti, were analysed using instrumental and sensory analysis. Different concentrations of Y. lipolytica produced important changes in the aroma profiles of microbiological models, analysed by solid-phase microextraction (SPME GC-MS). Sensory analysis with discrimination tests showed differences were detectable via human perception but did not concern the similarity to blue cheese odour. Increasing the inoculum concentration of K. lactis resulted in decreased variation between replicates. Partial least squares (PLS) regression on Flash profile data showed models inoculated with low concentrations of K. lactis exhibited blue cheese-related attributes, associated with increased ketone production. Results suggest that controlling the amount of Y. lipolytica and K. lactis during production offers potential to manipulate blue cheese aroma development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2013.08.081DOI Listing

Publication Analysis

Top Keywords

inoculum concentration
12
blue cheese
12
yarrowia lipolytica
8
lipolytica kluyveromyces
8
kluyveromyces lactis
8
cheese aroma
8
aroma development
8
microbiological models
8
lipolytica lactis
8
sensory analysis
8

Similar Publications

Background: Daptomycin pharmacokinetics and pharmacodynamics data relative to higher doses in patients are necessary for clinical practice.

Objectives: A monocentric, prospective study that enrolled patients with a diagnosis of spp. infective endocarditis treated with daptomycin according to clinical practice, to evaluate the pharmacokinetics/pharmacodynamics of different daptomycin daily doses (group A: 8-10 and group B: 11-12 mg/kg).

View Article and Find Full Text PDF

, commonly known as the "Chinese hibiscus", is a widely cultivated shrub with ornamental and medicinal applications (Jadhav et al., 2009). However, it is known to be susceptible to a range of pathogens including bacteria (Chase, 1986).

View Article and Find Full Text PDF

Owing to the massive refractory lignocellulose and leachate-organic loads, the stabilization of municipal solid waste (MSW) landfill is often prolonged, resulting in environmental burdens. Herein, various assembled multifunctional microbial inoculums (MMIs) were introduced into the semi-aerobic bioreactor landfill (SABL) to investigate the bioaugmentation impacts. Compared to control (CK) and other MMIs treatments (G1-G3), LD + LT + DM inoculation (G4) significantly increased volatile solids degradation (9.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how well a gut bacteria strain, Bacillus cereus AP-01, can break down low-density polyethylene (LDPE), using experiments over 28 days to measure its effectiveness.
  • The researchers employed various methods like FTIR and SEM to analyze changes in LDPE structure and confirmed the bacterial strain through molecular characterization.
  • Results showed that the bacteria significantly degraded LDPE, with a 30.3% weight loss and changes in mechanical properties, highlighting its potential as a solution for plastic pollution.
View Article and Find Full Text PDF

Butachlor is a widely utilized acetamide herbicide noted for its systemic selectivity against pre-emergence grass weeds. Butachlor has negative effects on organisms and the environment, so it is necessary to screen degradation strains. In this investigation, strain DC-1 was isolated from soil persistently exposed to butachlor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!