Factor Xa (FXa) proteolytically activates Factor VIII (FVIII) by cleaving P1 residues Arg(372), Arg(740), and Arg(1689). The Arg(372) site represents the rate-limiting step for procofactor activation, whereas cleavage at Arg(740) is a fast step. FXa also catalyzes inactivating cleavages that occur on a slower time scale than the activating ones. To assess the role of sequences flanking the Arg(372) and Arg(740) sites, recombinant FVIII variants in which P3-P3' sequences were swapped individually or in combination were prepared. Replacing the Arg(372) flanking sequence with that from the Arg(740) site increased the rate of cleavage at Arg(372), as judged by the ~5-fold increased rate in A1 subunit generation, and reduced the FVIIIa-dependent lag time for in situ FXa generation. The reciprocal swap yielded a nearly 2-fold increase in the rate of Arg(372) cleavage, while the combined double-swap variant showed a 10-fold rate increase at that site, consistent with the individual effects being additive. Although this cleavage represents the slow step for activation, the rate of this reaction appeared to be ~9-fold greater than the rate of the primary inactivating cleavage at Arg(336) in generating the A1(336) product. Interestingly, replacement of the Arg(372) flanking sequence with the Arg(740) sequence combined with an Arg(740)Gln mutation yielded both more rapid cleavage of the Arg(372) site and accelerated inactivating cleavages within the A1 subunit. These results indicate that flanking sequences in part modulate the reaction rates required for procofactor activation and influence the capacity of FXa as an initial activator of FVIII rather than an inactivator.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi4010123DOI Listing

Publication Analysis

Top Keywords

factor viii
8
arg372
8
arg372 arg740
8
arg372 site
8
procofactor activation
8
inactivating cleavages
8
arg372 flanking
8
flanking sequence
8
sequence arg740
8
increased rate
8

Similar Publications

Silent myocardial infarction (SMI) is a type of myocardial infarction that occurs in the absence of, or with, minimal symptoms, often leading to a delay in medical treatment. There is a lack of data regarding the incidence and/or prevalence of a left ventricular (LV) thrombus in those who have had an SMI, due to the rarity of such cases. We describe a case of an SMI with LV thrombus in an otherwise healthy young man, whose first presentation was with stroke-type symptoms and who was also later found to have a Factor V Leiden (FVL) mutation and raised factor VIII levels.

View Article and Find Full Text PDF

Background and objective Hemophilia A (HA) is a genetic bleeding disorder caused by a lack of factor VIII (FVIII) and is associated with frequent bleeding and joint damage. Traditional intravenous treatments for this condition are cumbersome and can lead to complications. Emicizumab, a bispecific monoclonal antibody, offers a promising subcutaneous alternative with potential safety and efficacy-related benefits.

View Article and Find Full Text PDF

Objective: To investigate the clinical phenotype and molecular pathogenic mechanism of a hereditary coagulation factor V deficiency (FⅤD) family.

Methods: A phase I assay was used to measure coagulation factors II, V, VII, VIII, IX, X, Ⅺ, Ⅻ (FⅡ∶C, FⅤ∶C, FⅦ∶C, FⅧ∶C, FⅨ∶C, FⅩ∶C, FⅪ∶C, FⅫ∶C), activated partial thromboplastin time (APTT) and prothrombin time (PT) to determine the clinical phenotype and molecular pathogenesis of F VD. Prothrombin time (PT) were used for phenotypic identification; high-throughput exome sequencing was applied to screen the whole gene variants, and Sanger sequencing was used to verify the suspected variants in gene; MutationTaster, PolyPhen-2 bioinformatics software was used to predict the pathogenicity of the variants, ClustalX software was used to analyze the amino acid conservatism, and PyMol software was used to simulate the model of the mutant protein.

View Article and Find Full Text PDF

Introduction: Hereditary bleeding disorders stem from the absence or insufficient levels of particular clotting proteins, essential for facilitating coagulation in the clotting cascade. Among the most prevalent are hemophilia A (deficiency of Factor VIII), hemophilia B (deficiency of Factor IX), and von Willebrand disease. Management of pharmacoresistant epilepsy is more difficult in a patient with bleeding disorder due to increased risk of bleeding during surgery.

View Article and Find Full Text PDF

Background: Subcutaneous emicizumab, a factor VIII (FVIII)-mimicking bispecific monoclonal antibody, can effectively prevent bleeds in haemophilia A (HA) patients with/without inhibitors; however, its standard-dose regimens are financially burdensome. Low-dose emicizumab prophylaxis may alternatively be applied to noninhibitor HA patients in resource-limited settings.

Methods: During 2023, Thai patients with noninhibitor severe HA or moderate HA with severe bleeding phenotype (historical annualized bleeding rate [ABR] >5 bleeds/year before regular FVIII prophylaxis) who received low-/intermediate-dose FVIII secondary prophylaxis ≥8 months were enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!