Aims: Influenza A virus (IAV), a major airborne pathogen, is closely associated with significant morbidity and mortality. The primary target for influenza virus replication is the respiratory epithelium, which reacts to infection by mounting a multifaceted antiviral response. A part of this mucosal host defense is the generation of reactive oxygen species (ROS) by NADPH oxidases. Duox1 and Duox2 are the main ROS-producing enzymes in the airway epithelium, but their contribution to mammalian host defense is still ill defined.

Results: To gain a better understanding of Duox function in respiratory tract infections, human differentiated lung epithelial cells and an animal model were used to monitor the effect of epithelial ROS on IAV propagation. IAV infection led to coordinated up-regulation of Duox2 and Duox-mediated ROS generation. Interference with H2O2 production and ROS signaling by oxidase inhibition or H2O2 decomposition augmented IAV replication. A nuclear pool of Duox enzymes participated in the regulation of the spliceosome, which is critical for alternative splicing of viral transcripts and controls the assembly of viable virions. In vivo silencing of Duox increased the viral load on intranasal infection with 2009 pandemic H1N1 influenza virus.

Innovation: This is the first study conclusively linking Duox NADPH oxidases with the antiviral mammalian immune response. Further, ROS generated by Duox enzymes localized adjacent to nuclear speckles altered the splicing of viral genes.

Conclusion: Duox-derived ROS are host protective and essential for counteracting IAV replication.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ars.2013.5353DOI Listing

Publication Analysis

Top Keywords

influenza virus
12
reactive oxygen
8
oxygen species
8
antiviral response
8
host defense
8
nadph oxidases
8
iav replication
8
duox enzymes
8
splicing viral
8
duox
6

Similar Publications

RTP4 restricts influenza A virus infection by targeting the viral NS1 protein.

Virology

January 2025

NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China; National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, 215123, China. Electronic address:

The influenza A virus evades the host innate immune response to establish infection by inhibiting RIG-I activation through its nonstructural protein 1 (NS1). Here, we reported that receptor-transporting protein 4 (RTP4), an interferon-stimulated gene (ISG), targets NS1 to inhibit influenza A virus infection. Depletion of RTP4 significantly increased influenza A virus multiplication, while NS1-deficient viruses were unaffected.

View Article and Find Full Text PDF

Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections.

View Article and Find Full Text PDF

Madin-Darby Canine Kidney (MDCK) cells are a key cell line for influenza vaccine production, due to their high viral yield and low mutation resistance. In our laboratory, we established a tertiary cell bank (called M60) using a standard MDCK cell line imported from American Type Culture Collection (ATCC) in the USA. Due to their controversial tumourigenicity, we domesticated non-tumourigenic MDCK cells (named CL23) for influenza vaccine production via monoclonal screening in the early stage of this study, and the screened CL23 cells were characterised based on their low proliferative capacity, which had certain limitations in terms of expanding their production during cell resuscitation.

View Article and Find Full Text PDF

The Role of Bone Marrow Stromal Cell Antigen 2 (BST2) in the Migration of Dendritic Cells to Lymph Nodes.

Int J Mol Sci

December 2024

College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses.

View Article and Find Full Text PDF

The Molecular Basis of Asthma Exacerbations Triggered by Viral Infections: The Role of Specific miRNAs.

Int J Mol Sci

December 2024

Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland.

Viral respiratory infections are a significant clinical problem among the pediatric population and are one of the leading causes of hospitalization. Most often, upper respiratory tract infections are self-limiting. Still, those that involve the lower respiratory tract are usually associated with asthma exacerbations, leading to worsening or even the initiation of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!