Gemcitabine is a chemotherapy agent commonly used in the treatment of non-small cell lung cancer (NSCLC) that has been demonstrated to induce apoptosis in NSCLC cells by increasing functionally active Fas expression. The aim of this study was to evaluate the Fas/Fas ligand (FasL) system involvement in gemcitabine-induced lung cancer cell killing. NSCLC H292 cells were cultured in the presence or absence of gemcitabine. FasL mRNA and protein were evaluated by real-time PCR, and by Western blot and flow cytometry, respectively. Apoptosis of FasL-expressing cells was evaluated by flow cytometry, and caspase-8 and caspase-3 activation by Western blot and a colorimetric assay. Cytotoxicity of lymphokine-activated killer (LAK) cells and malignant pleural fluid lymphocytes against H292 cells was analysed in the presence or absence of the neutralizing anti-Fas ZB4 antibody, by flow cytometry. Gemcitabine increased FasL mRNA and total protein expression, the percentage of H292 cells bearing membrane-bound FasL (mFasL) and of mFasL-positive apoptotic H292 cells, as well as caspase-8 and caspase-3 cleavage. Moreover, gemcitabine increased CH11-induced caspase-8 and caspase-3 cleavage and proteolytic activity. Cytotoxicity of LAK cells and pleural fluid lymphocytes was increased against gemcitabine-treated H292 cells and was partially inhibited by ZB4 antibody. These results demonstrate that gemcitabine: (i) induces up-regulation of FasL in lung cancer cells triggering cell apoptosis via an autocrine/paracrine loop; (ii) induces a Fas-dependent apoptosis mediated by caspase-8 and caspase-3 activation; (iii) enhances the sensitivity of lung cancer cells to cytotoxic activity of LAK cells and malignant pleural fluid lymphocytes, partially via Fas/FasL pathway. Our data strongly suggest an active involvement of the Fas/FasL system in gemcitabine-induced lung cancer cell killing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904245 | PMC |
http://dx.doi.org/10.1111/imm.12190 | DOI Listing |
Nat Prod Res
January 2025
Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
Powdered germinated Thai rice () is widely utilised as a dietary supplement to support health and prevent diseases. This study investigated the bioactive compound profile of water extracts from beverage powder made from Thai germinated brown rice (GBRE) and assessed its anticancer effects on cholangiocarcinoma, lung cancer, and liver cancer cell lines. Proton nuclear magnetic resonance (1H-NMR) revealed 23 metabolites, including amino acids, sugar, phenolic compounds and nitrogenous compounds.
View Article and Find Full Text PDFCancer Med
February 2025
Pulmonology and Thoracic Oncology Department, APHP Hôpital Tenon and Sorbonne Université, Paris, France.
Background: Real-world data regarding patients with non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion (ex20ins) mutations receiving mobocertinib are limited. This study describes these patients' characteristics and outcomes.
Methods: A chart review was conducted across three countries (Canada, France, and Hong Kong), abstracting data from eligible patients (NCT05207423).
Pharmaceutics
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
In the original publication [...
View Article and Find Full Text PDFPharmaceutics
January 2025
Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China.
: (PG) has been widely researched as a conductant drug for the treatment of lung diseases by ancient and modern traditional Chinese medicine (TCM) practitioners. Inspired by the mechanism and our previous finding about fructans and fructooligosaccharides from (FFPG), we developed a nano drug delivery system (NDDS) targeting lung cancer. The aim was to improve the efficiency of the liposomal delivery of Paclitaxel (PTX) and enhance the anti-tumor efficacy.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Ibaraki, Japan.
Orally administered sorafenib has shown limited improvement in overall survival for non-small-cell lung cancer patients, likely due to poor pharmacokinetics and adverse effects, including gastrointestinal toxicity. To address these issues, we developed silica-containing antioxidant nanoparticles (siRNP) as a carrier to enhance the therapeutic efficacy of lipophilic sorafenib. Sorafenib was loaded into siRNP via dialysis (sora@siRNP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!