Low-level laser therapy (810 nm) protects primary cortical neurons against excitotoxicity in vitro.

J Biophotonics

Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston MA, USA; Department of Pathology, Guangxi Medical University, Nanning, Guangxi, China.

Published: August 2014

Excitotoxicity describes a pathogenic process whereby death of neurons releases large amounts of the excitatory neurotransmitter glutamate, which then proceeds to activate a set of glutamatergic receptors on neighboring neurons (glutamate, N-methyl-D-aspartate (NMDA), and kainate), opening ion channels leading to an influx of calcium ions producing mitochondrial dysfunction and cell death. Excitotoxicity contributes to brain damage after stroke, traumatic brain injury, and neurodegenerative diseases, and is also involved in spinal cord injury. We tested whether low level laser (light) therapy (LLLT) at 810 nm could protect primary murine cultured cortical neurons against excitotoxicity in vitro produced by addition of glutamate, NMDA or kainate. Although the prevention of cell death was modest but significant, LLLT (3 J/cm(2) delivered at 25 mW/cm(2) over 2 min) gave highly significant benefits in increasing ATP, raising mitochondrial membrane potential, reducing intracellular calcium concentrations, reducing oxidative stress and reducing nitric oxide. The action of LLLT in abrogating excitotoxicity may play a role in explaining its beneficial effects in diverse central nervous system pathologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057365PMC
http://dx.doi.org/10.1002/jbio.201300125DOI Listing

Publication Analysis

Top Keywords

cortical neurons
8
neurons excitotoxicity
8
excitotoxicity vitro
8
nmda kainate
8
cell death
8
excitotoxicity
5
low-level laser
4
laser therapy
4
therapy 810
4
810 protects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!