Two fast, simple, selective and economical sample preparation methods for the determination of entecavir in biological materials available at low amounts are reported. The choice of optimal extraction techniques was performed with regard to analyte hydrophilicity, sample volumes, selectivity, method recovery and rapidity. The compatibility of the eluate with the hydrophilic interaction chromatography (HILIC) mobile phase was crucial to allow the elimination of the evaporation and reconstitution steps and to obtain acceptable peak shapes. Different types of sorbents were employed for the extraction of two biological materials (plasma and plasma ultrafiltrate). The mixed-mode polymeric sorbent MCX was chosen as a suitable one for the solid phase extraction (SPE) of plasma samples. The analytes were eluted with 1ml of the mixture of 5 % ammonium hydroxide in ACN:water (95:5). Protein precipitation (PP) with 1ml of ACN was used to remove proteins from 500μl of plasma sample prior to SPE extraction. The microextraction by packed sorbent (MEPS) was employed for the cleaning up of plasma ultrafiltrate samples due to very small volumes available for the analysis. MEPS implemented a novel sorbent based on porous graphitic carbon, semi-automatic analytical syringe and a small volume of sample (50μl). The elution step was performed using 100μl of the mixture of 5mM ammonium acetate pH 4.0:ACN (25:75). The MEPS eluate was fully compatible with HILIC mobile phase subsequently used for the analysis of entecavir, unlike SPE eluate, which had to be evaporated and reconstituted in mobile phase. Both analytical methods were validated and demonstrated good linearity in a range 1-100ng/ml (r(2)>0.9992) for plasma samples and in a range 0.5-100ng/ml (0.9991) for the plasma ultrafiltrate samples. Intra-day accuracy expressed as recovery was within the range from 80-98% for the plasma samples and 97-106% for the plasma ultrafiltrate samples. Inter-day accuracy ranged within 81-106% for the plasma and 95-101% for the plasma ultrafiltrate samples. The intra-day precision expressed as the % of RSD was lower than 4% for both matrices and inter-day precision was lower than 7% for plasma and lower than 17% for plasma ultrafiltrate. Method sensitivity reached LLOQ of 1ng/ml in plasma and 0.5ng/ml in plasma ultrafiltrate samples. The method was applied for the determination of concentration-time profiles of entecavir in plasma of the perfusate for rat kidney perfusion and for the measurement of concentration of entecavir in plasma ultrafiltrate samples. The results should be helpful in the evaluation of excretion mechanism of entecavir.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2013.08.034 | DOI Listing |
Kidney360
January 2025
Lund University, Skåne University Hospital, Clinical Sciences Lund, Department of Nephrology, Lund, Sweden.
Background: Water retention, ultrafiltration insufficiency, and metabolic complications due to abnormally high glucose concentrations are still common problems in patients treated with peritoneal dialysis. Phloretin, a nonselective inhibitor of facilitative glucose transporter channels (GLUT), has shown to improve water transport and lower glucose absorption in experimental peritoneal dialysis. However, the dose-response relationship remains unknown, and we therefore performed a dose-response study to elucidate the pharmacodynamic properties of intra-peritoneal phloretin therapy.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
The aim of the present study was to investigate the potential of human plasma derived exosomes for the delivery of hydroxyurea to enhance its therapeutic efficacy in breast cancer. Plasma derived exosomes were isolated using differential centrifugation along with ultrafiltration method. Hydroxyurea was encapsulated in exosomes using a freeze-thaw method.
View Article and Find Full Text PDFMol Cell Proteomics
January 2025
VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium. Electronic address:
Extracellular vesicles (EVs), membrane-delimited nanovesicles that are secreted by cells into the extracellular environment, are gaining substantial interest due to their involvement in cellular homeostasis and their contribution to disease pathology. The latter in particular has led to an exponential increase in interest in EVs as they are considered to be circulating packages containing potential biomarkers and are also a possible biological means to deliver drugs in a cell-specific manner. However, several challenges hamper straightforward proteome analysis of EVs as they are generally low abundant and reside in complex biological matrices.
View Article and Find Full Text PDFFront Physiol
January 2025
Human Physiology Research Unit, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada.
Introduction: The fraction of drug circulating in the blood that is not bound to plasma proteins ( ) is considered pharmacologically active since it readily binds to its receptor. evidence suggests that changes in temperature and pH affect the affinity of drug binding to plasma proteins, resulting in changes in . In light of the well-established effects of exercise on body temperature and blood pH, we investigated whether an increase in blood temperature and decrease in pH facilitated through passive heating and exercise translated to a change in the of caffeine.
View Article and Find Full Text PDFJ Pharm Biomed Anal
December 2024
Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul 34452, Turkiye.
Epilepsy is a major disease affecting millions of people worldwide. Carbamazepine is on the World Health Organization's list of essential medicines and is one of the most prescribed medicines for treating epilepsy. It has a narrow therapeutic range (4-12 μg/mL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!