Endosulfan induced cell death in Sertoli-germ cells of male Wistar rat follows intrinsic mode of cell death.

Chemosphere

Embryotoxicology Section & Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, P.O. Box No. 80, Mahatma Gandhi Marg, Lucknow 226 001, India.

Published: January 2014

Health of germ cells may affect production of quality gametes either due to endogenous or exogenous factors. Pesticides are among the exogenous factors that can enter the organisms through various routes of exposure and also can affect the reproductive system of an organism. Endosulfan is an organochlorine cyclodiene pesticide used widely for controlling agricultural pests. It has been shown to induce reproductive dysfunctions such as sperm abnormalities, reduced intracellular spermatid count in exposed organisms. Germ cells being the progenitor cells for male gametes and Sertoli cells as their nourishing cells, we examined whether endosulfan induces cell death in Sertoli-germ cells of male rats. Sertoli-germ cells, isolated from 28 d old male Wistar rats, were exposed to endosulfan (2.0, 20.0 and 40.0 μg mL(-1)) for 24-72 h. Cytotoxicity, endosulfan concentration, reactive oxygen species (ROS) generation, oxidative stress parameters were measured in these cells in the absence or presence of endosulfan for the above mentioned exposure periods and subsequently, cell death endpoints were measured. We detected endosulfan in the exposed cells and demonstrated increased cell death in exposed Sertoli-germ cells as evidenced by a significant increase in annexin-V staining, depolarization of mitochondrial membrane, caspase-9 and -3 activities and BAD and PARP cleavage activities and DNA ladder formation along with non-significant increase in autophagic cell death. The study suggests that endosulfan can cause cell death in exposed Sertoli-germ cells due to higher oxidative damage with the activation of intrinsic cell death pathway which may eventually affect the production of quality gametes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2013.09.029DOI Listing

Publication Analysis

Top Keywords

cell death
32
sertoli-germ cells
20
cells
12
cells male
12
endosulfan
8
cell
8
death
8
death sertoli-germ
8
male wistar
8
germ cells
8

Similar Publications

Cuproplasia and cuproptosis, two sides of the coin.

Cancer Commun (Lond)

January 2025

Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China.

Copper is an essential micronutrient in the human body, mainly acting as a crucial cofactor required for a wide range of physiological processes across nearly all cell types. Recent advances revealed that tumor cells seize copper to fulfill their rapid proliferation, metastasis, immune evasion, and so on by reprogramming the copper regulatory network, defined as cuproplasia. Thus, targeting copper chelation to reduce copper levels has been considered a rational tumor therapy strategy.

View Article and Find Full Text PDF

Doxorubicin (DOXO) has long been used clinically and remains a key drug in cancer therapy. DOXO-induced cardiomyopathy (DICM) is a chronic and fatal complication that severely limits the use of DOXO. However, there are very few therapeutic agents for DICM, and there is an urgent need to identify those that can be used for a larger number of patients.

View Article and Find Full Text PDF

Increasing demand for adeno-associated virus (AAV) used in gene therapy highlights the need to enhance AAV production. When intracellular AAV2 and extracellular AAV9 were produced in HEK293T cells using the triple transfection method, apoptosis occurred during the AAV production. To mitigate apoptosis induced by AAV production, the pro-apoptotic BAX/BAK1 genes were knocked out in HEK293T cells.

View Article and Find Full Text PDF

CASC8 activates the pentose phosphate pathway to inhibit disulfidptosis in pancreatic ductal adenocarcinoma though the c-Myc-GLUT1 axis.

J Exp Clin Cancer Res

January 2025

Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, PR China.

Purpose: Glucose starvation induces the accumulation of disulfides and F-actin collapse in cells with high expression of SLC7A11, a phenomenon termed disulfidptosis. This study aimed to confirm the existence of disulfidptosis in pancreatic ductal adenocarcinoma (PDAC) and elucidate the role of Cancer Susceptibility 8 (CASC8) in this process.

Methods: The existence of disulfidptosis in PDAC was assessed using flow cytometry and F-actin staining.

View Article and Find Full Text PDF

Immunomodulatory effect of efferocytosis at the maternal-fetal interface.

Cell Commun Signal

January 2025

Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.

Efferocytosis is a mechanism by which phagocytes efficiently clear apoptotic cells, averting their secondary necrosis and the subsequent release of potentially immunogenic or cytotoxic substances that can trigger strong immune and inflammatory responses. During efferocytosis, the metabolic pathways of phagocytes are transformed, which, along with the catabolism of apoptotic cargo, can affect their function and inflammatory state. Extensive apoptosis occurs during placental development, and some studies reported the immunomodulatory effects of efferocytosis at the maternal-fetal interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!