Quantum fidelity for degenerate ground states in quantum phase transitions.

Phys Rev E Stat Nonlin Soft Matter Phys

Centre for Modern Physics and Department of Physics, Chongqing University, Chongqing 400044, China and School of Science, Xi'an Polytechnic University, Xi'an 710048, China.

Published: September 2013

Spontaneous symmetry breaking in quantum phase transitions leads to a system having degenerate ground states in its broken-symmetry phase. In order to detect all possible degenerate ground states for a broken-symmetry phase, we introduce a quantum fidelity defined as an overlap measurement between a system ground state and an arbitrary reference state. If a system has N-fold degenerate ground states in a broken-symmetry phase, the quantum fidelity is shown to have N different values with respect to an arbitrarily chosen reference state. The quantum fidelity then exhibits an N-multiple bifurcation as an indicator of a quantum phase transition without knowing any detailed broken symmetry between a broken-symmetry phase and a symmetry phase as a system parameter crosses its critical value (i.e., a multiple bifurcation point). Each order parameter, characterizing a broken-symmetry phase from each degenerate ground state reveals an N-multiple bifurcation. Furthermore, it is shown that it is possible to specify how each order parameter calculated from degenerate ground states transforms under a subgroup of a symmetry group of the Hamiltonian. Examples are given through study of the quantum q-state Potts models with a transverse magnetic field by employing tensor network algorithms based on infinite-size lattices. For any q, a general relation between the local order parameters is found to clearly show the subgroup of the Z_{q} symmetry group. In addition, we systematically discuss criticality in the q-state Potts model.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.88.032110DOI Listing

Publication Analysis

Top Keywords

degenerate ground
24
ground states
20
broken-symmetry phase
20
quantum fidelity
16
quantum phase
12
states broken-symmetry
12
phase
9
quantum
8
phase transitions
8
ground state
8

Similar Publications

Cognitive resilience (CR) describes the phenomenon of individuals evading cognitive decline despite prominent Alzheimer's disease neuropathology. Operationalization and measurement of this latent construct is non-trivial as it cannot be directly observed. The residual approach has been widely applied to estimate CR, where the degree of resilience is estimated through a linear model's residuals.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop ground-truth histology about contributors to variable fundus autofluorescence (FAF) signal and thus inform patient selection for treating geographic atrophy (GA) in age-related macular degeneration (AMD).

Methods: One woman with bilateral multifocal GA, foveal sparing, and thick choroids underwent 535 to 580 nm excitation FAF in 6 clinic visits (11 to 6 years before death). The left eye was preserved 5 hours after death.

View Article and Find Full Text PDF

Neural Stem/Progenitor Cell Therapy in Patients and Animals with Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-analysis.

Mol Neurobiol

January 2025

Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative malady that causes progressive degeneration and loss of motor neuron function in the brain and spinal cord, eventually resulting in muscular atrophy, paralysis, and death. Neural stem/progenitor cell (NSPC) transplantation can improve bodily function in animals and delay disease progression in patients with ALS. This paper summarizes and analyzes the efficacy and safety of neural stem/progenitor cell (NSPC) transplantation as a treatment for ALS, aiming to improve function and delay disease progression in patients.

View Article and Find Full Text PDF

The coordination compounds featuring a {CuO} core, typically bridged by hydroxo or alkoxo groups, are particularly intriguing due to their notable magnetic properties and catalytic activity. In this study, we explored the synthesis and characterization of four new Schiff base ligands and their subsequent complexation with Cu salts, which resulted in the formation of three tetranuclear complexes: [Cu(L)]·2HO (1), [Cu(L)(HL)](Cl)(NO)·5HO (2), and [Cu(L)] (3), as well as one dinuclear complex: [Cu(L)] (4). These tetranuclear complexes all feature a {CuO} core, but with differing coordination environments around the Cu centers.

View Article and Find Full Text PDF

We present the theory and implementation of a fully variational wave function-density functional theory (DFT) hybrid model, which is applicable to many cases of strong correlation. We denote this model as the multiconfigurational self-consistent on-top pair-density functional theory (MC-srPDFT) model. We have previously shown how the multiconfigurational short-range DFT (MC-srDFT) hybrid model can describe many multiconfigurational cases of any spin symmetry and also state-specific calculations on excited states [Hedegård et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!