The chemisorption of sulfur dioxide (SO2) on the Hofmann-like spin crossover porous coordination polymer (SCO-PCP) {Fe(pz)[Pt(CN)4]} has been investigated at room temperature. Thermal analysis and adsorption-desorption isotherms showed that ca. 1 mol of SO2 per mol of {Fe(pz)[Pt(CN)4]} was retained in the pores. Nevertheless, the SO2 was loosely attached to the walls of the host network and completely released in 24 h at 298 K. Single crystals of {Fe(pz)[Pt(CN)4]}·nSO2 (n ≈ 0.25) were grown in water solutions saturated with SO2, and its crystal structure was analyzed at 120 K. The SO2 molecule is coordinated to the Pt(II) ion through the sulfur atom ion, Pt-S = 2.585(4) Å. This coordination slightly stabilizes the low-spin state of the Fe(II) ions shifting the critical temperatures of the spin transition by 8-12 K. DFT calculations have been performed to rationalize these observations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic4020477DOI Listing

Publication Analysis

Top Keywords

chemisorption sulfur
8
sulfur dioxide
8
spin crossover
8
crossover porous
8
porous coordination
8
coordination polymer
8
so2
5
reversible chemisorption
4
dioxide spin
4
polymer chemisorption
4

Similar Publications

This study aims to investigate a new approach to removing hazardous dyes like Direct Blue 86 (DB86) and Acid Yellow 36 (AY36) from aqueous environments. Delonix regia biochar-sulphur (DRB-S), made from Delonix regia seed pods (DPSPs), is an inexpensive and environmentally friendly adsorbent. Different characterization investigations using BJH, BET, FTIR, SEM, DSC, TGA, and EDX were utilized in the descriptions of the DRB-S biosorbent.

View Article and Find Full Text PDF

This report investigates the preparation, characterization, and application of activated carbon derived from Spathodea campanulata flowers (SCAC) to remove Congo Red (CR) dye from aqueous streams. SCAC was synthesized using orthophosphoric acid activation which yielded a mesoporous material with a specific surface area of (986.41 m/g), significantly exceeding values reported for flower-derived activated carbons in the available literature.

View Article and Find Full Text PDF

The efficiency of graphitic carbon nitride (g-CN) in photocatalytic reduction of carbon dioxide (CO) is inhibited by the constrained CO chemisorption, insufficient light absorption and quick charge recombination. To address these problems, we successfully synthesized g-CN/AgInS (CN/AgInS) heterostructured photocatalytic materials via an electrostatic self-assembly method. An intimate phase contact between CN and AgInS is formed, paving the way for the charge transfer and redistribution near the interface of the CN/AgInS heterostructures.

View Article and Find Full Text PDF

Room-temperature sodium-sulfur (RT Na-S) batteries that typically feature multielectron conversion chemistries can allow an ultrahigh specific capacity of 1675 mA h g and a high energy density of 1275 W h kg but unfortunately suffer from a lot of intractable challenges from sulfur cathodes. These issues cover the poor electronic conductivity of pristine sulfur and solid products, the severe shuttle effect of polysulfides, and the sluggish redox kinetics, The shuttling behavior of polysulfides always leads to cathode/anode instability and performance degeneration. Recently, the emerging catalysis strategy has been demonstrated as a reliable pathway to tackle the central issues caused by sulfur electrochemistry and revitalize RT Na-S batteries.

View Article and Find Full Text PDF

Conversion-type selenium cathodes are considered a highly promising alternative to sulfur cathodes due to their high conductivity and similar theoretical capacity. However, stress-diffusion and shuttle effects during the conversion process remain significant challenges that urgently need to be addressed. Herein, a composite matrix of MoSe anchored on the surface of N-doped hollow mesoporous carbon nanospheres (NHMCNS) was designed as a Se host to construct Se/C cathodes (Se/MoSe@NHMCNS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!