A series of graft copolymers consisting of polystyrene backbone with biocompatible side chains based on (co)polymers of l-lactic acid and glycolic acid were synthesised by combination two controlled polymerisations, namely, nitroxide mediated radical polymerisation (NMRP) and ring opening polymerisation (ROP) with "Click" chemistry. The main goal of this work was to design new biodegradable microspheres using obtained graft copolymers for long-term sustained release of imatinib mesylate (IMM) as a model drug. The IMM loaded microspheres of the graft copolymers, polystyrene-g-poly(lactide-co-glycolide) (PS-g-PLLGA), polystyrene-g-poly(lactic acid) (PS-g-PLLA) and poly(lactic-coglycolic acid) (PLLGA) were then prepared by a modified water-in-oil-in-water (w1/o/w2) double emulsion/solvent evaporation technique. The optimised microspheres were characterised by particle size, encapsulation efficiency, and surface morphology also; their degradation and release properties were studied in vitro. The degradation studies of three different types of microspheres showed that the PS backbone of the graft copolymers slows down the degradation rate compared to PLLGA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/02652048.2013.834993 | DOI Listing |
Polymers (Basel)
January 2025
Department of Forest and Fire Sciences, University of Idaho, Moscow, ID 83844-1132, USA.
This study investigated the valorization of industrial lignin for producing biodegradable polybutylene succinate (PBS)-lignin copolymers. PBS was blended with varying lignin contents (0-45 wt. %) and crosslinked/grafted using dicumyl peroxide (DCP).
View Article and Find Full Text PDFMolecules
January 2025
Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Gliniana 33 Street, 20-614 Lublin, Poland.
The properties of starch graft poly(cinnamyl methacrylate) copolymers were presented. The "grafting from" method and different ratios of starch to methacrylic monomer were used. The copolymers with the maximum grafting percent (G: 55.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Shandong Ocean Pipe Technology Co., Ltd, Dezhou 253300, China.
Polymeric coatings that combine resistance to adhesion ("defending") and killing ("attacking") of biocontaminants were proposed to endow the surface with nonadhesive and bactericidal capabilities. In contrast, a zwitterionic copolymer P(GMA--DMAPS) with antifouling groups ([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, DMAPS) and a zwitterionic/cationic copolymer P(GMA--DMAPS--DMC) with bactericidal groups ([2-(methacryloyloxy)ethyl]trimethylammonium chloride, DMC) were synthesized, of which the latter exhibited synergistic inhibitory and killing properties. The distinct feed ratios of monomers were conducted, and the optimal molar ratio was obtained.
View Article and Find Full Text PDFInt J Pharm
January 2025
Novartis Pharma AG, GDD, TRD Biologics & CGT 4002 Basel, Switzerland.
In this study, we applied a systematic approach to establish an iterative workflow and to drive the chemical design of thermosensitive, in situ forming injectables as a function of the intended target product profile. Self-assembly, mechanical properties, physical state, and thermal transition behavior were assessed via nuclear magnetic resonance, oscillatory rheology, turbidimetry and visual inspection techniques. Thus, poly(N-isopropylacrylamide) (PNIPAM) and poly(2-alkyl-2-oxazoline)s (PAOx)s with LCSTs below body temperature were studied before and after grafting them onto azido-substituted hyaluronic acid (HA) via strain-promoted azide-alkyne cycloaddition (SPAAC).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Dexamethasone (Dex) is a primary medication for treating dry eye syndrome, and tobramycin-dexamethasone eye drops are commercially available. However, the eye's complex physiological environment reduces its bioavailability, and repeated use can lead to significant systemic toxicity and side effects. This study introduces a novel conjugate of chitosan (CS) and N-acetylcysteine (NAC), a bioadhesive material, which was grafted onto the surface of a Dex-supported nanostructured lipid carrier (NLC) to develop an innovative nanoparticle lipid ocular drug delivery system (CS-NAC@Dex-NLC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!