The extremely high hygroscopicity (solubility in water ≥2 g/ml) of the pharmaceutical preparation mildronate defines specific requirements to both packaging material and storage conditions. To overcome the above mentioned inconveniences, microencapsulated form of mildronate was developed using polystyrene (PS) and poly (lactic acid) (PLA) as watertight coating materials. Drug/polymer interaction as well as influence of the microencapsulation process variables on microparticle properties was studied in detail. Water-in-oil-in-water double emulsion technique was adapted and applied for the preparation of PS/mildronate microparticles with total drug load up to 77 %wt and PLA/mildronate microparticles with total drug load up to 80 %wt. The repeatability of the microencapsulation process was ±4% and the encapsulation efficiency of the active ingredient reached 60 %wt. The drug release kinetics from the obtained microparticles was evaluated and it was found that drug release in vivo could be successfully sustained if polystyrene matrix has been used.

Download full-text PDF

Source
http://dx.doi.org/10.3109/02652048.2013.834992DOI Listing

Publication Analysis

Top Keywords

microencapsulation process
8
microparticles total
8
total drug
8
drug load
8
load %wt
8
drug release
8
microencapsulation mildronate
4
mildronate biodegradable
4
biodegradable non-biodegradable
4
non-biodegradable polymers
4

Similar Publications

In this research, the emulsification method was used to encapsulate in microparticles of whey protein concentrate (WPC) at different levels (1%, 2%, and 4%) and gum Arabic (GA) at three levels (0/5%, 1%, and 1/5%) and a constant level of sunflower oil (5%). The results showed that emulsions with higher quantities of wall materials exhibited better encapsulation efficiency (67%/57%) and preservation ability at different temperatures, different pH, and presence of 1% bile salt. During the storage time, the droplet size of the emulsion increased more than two times (from 2.

View Article and Find Full Text PDF

Bioactive Properties of Microencapsulated Anthocyanins from and .

Molecules

November 2024

Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador.

Anthocyanins, widely recognized for their antioxidant properties and potential health benefits, are highly susceptible to degradation due to environmental factors such as light, temperature, and pH leading to reduced bioavailability and efficacy. Microencapsulation, which involves entrapment in a matrix to enhance stability and bioavailability. This study aims to investigate the bioactive properties of microencapsulated anthocyanins derived from (Andean blueberry) and (Andean blackberry).

View Article and Find Full Text PDF

Microencapsulation of Anthocyanins from and : Impacts on Antioxidant, Antimicrobial, and Cytotoxic Activities.

Nutrients

November 2024

Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Centro de Investigación Biomédica (CENBIO), Quito 170527, Ecuador.

This study investigates the biological activities of microencapsulated anthocyanins extracted from two Andean ancestral edible plants, , and , with a focus on their potential applications in functional foods and therapeutics. The primary objective was to evaluate their antioxidant, antimicrobial, and cytotoxic properties alongside structural and functional analyses of the microencapsulation process. Anthocyanins were extracted and microencapsulated using maltodextrin as a carrier.

View Article and Find Full Text PDF

Commercial DHA-rich algal oil has some issues, such as an unpleasant odor and susceptibility to oxidation. The main fishy odor compounds in commercial DHA-rich algal oil powder and DHA-rich algal oil microcapsules are hexanal and (E, E)-2,4-heptadienal. To address this issue, a microencapsulation process was designed for DHA-rich algal oil using infant rice powder (IRP), maltodextrin (MD), and whey protein concentrate (WPC) as wall materials, with sodium starch octenyl succinate (SSOS) and monoacylglycerol (MAC) as emulsifiers.

View Article and Find Full Text PDF

The present work reports on the microencapsulation of GG (LGG) by the spray-drying process using a solution of starch, whey protein concentrate (WPC), soy lecithin and ascorbic acid as a carrier, with addition of different types of butters. The aim of this study was to examine the protective mechanism of six different butter samples on the viability rate of LGG bacteria directly after the spray-drying process and during storage for 4 weeks at 4 °C and 20 °C (±1 °C) based on hypothetical factors-the fatty acid's chemical character and content, and its melting enthalpy. The viability of bacteria, moisture content, water activity, color properties, morphology, particle size of powder, melting enthalpy of butters and their fatty acids composition were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!