Distinct types of lipofuscin pigment in the hippocampus and cerebellum of aged cheirogaleid primates.

Anat Rec (Hoboken)

Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium; School of Medicine, Laboratory of Histology and Neuropathology, Université libre de Bruxelles, Brussels, Belgium; Department of Anthropology, University of Arkansas, Fayetteville, Arkansas.

Published: December 2013

The formation of autofluorescent lipopigment or lipofuscin is a highly consistent and reliable cytological change that correlates with cellular aging in postmitotic cells. One causal factor of lipofuscinogenesis involves free radical-induced lipid peroxidation. In mammals, dentate gyrus neurons and Purkinje cells are usually affected widely. In this study, we investigated the ultrastructure of lipofuscin deposits in large neurons of the dentate gyrus and in Purkinje cells of aged fat-tailed dwarf lemurs (Cheirogaleus medius Geoffroy, 1812) with electron and confocal microscopy and compared it with previous observations in other species. Cheirogaleid primates such as mouse and dwarf lemurs are archaic primates that provide interesting nonhuman models of aging. Our study revealed region-specific as well as species-specific characteristics of lipofuscin ultrastructure. This suggests differences in cellular metabolism and/or in organelles involved in lipofuscin production in cerebellar Purkinje cells and in hippocampal dentate gyrus neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.22809DOI Listing

Publication Analysis

Top Keywords

dentate gyrus
12
purkinje cells
12
cheirogaleid primates
8
gyrus neurons
8
dwarf lemurs
8
lipofuscin
5
distinct types
4
types lipofuscin
4
lipofuscin pigment
4
pigment hippocampus
4

Similar Publications

Infants born with intrauterine growth restriction (IUGR) have up to a five-fold higher risk of learning and memory impairment than those with normal growth. Using a mouse model of hypertensive diseases of pregnancy (HDP) to replicate uteroplacental insufficiency (UPI), we have previously shown that UPI causes premature embryonic hippocampal dentate gyrus (DG) neurogenesis in IUGR offspring. The DG is a brain region that receives the first cortical information for memory formation.

View Article and Find Full Text PDF

Sexual and Metabolic Differences in Hippocampal Evolution: Alzheimer's Disease Implications.

Life (Basel)

November 2024

Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain.

Sex differences in brain metabolism and their relationship to neurodegenerative diseases like Alzheimer's are an important emerging topic in neuroscience. Intrinsic anatomic and metabolic differences related to male and female physiology have been described, underscoring the importance of considering biological sex in studying brain metabolism and associated pathologies. The hippocampus is a key structure exhibiting sex differences in volume and connectivity.

View Article and Find Full Text PDF

Unlabelled: Traumatic brain injury (TBI) causes multiple cerebrovascular disruptions and oxidative stress. These pathological mechanisms are often accompanied by serious impairment of cerebral blood flow autoregulation and neuronal and glial degeneration.

Background/objectives: Multiple biochemical cascades are triggered by brain damage, resulting in reactive oxygen species production alongside blood loss and hypoxia.

View Article and Find Full Text PDF

Dominance hierarchies are key to social organization in group-living species, requiring individuals to recognize their own and others' ranks. This is particularly complex for intermediate-ranking animals, who navigate interactions with higher- and lower-ranking individuals. Using in situ hybridization, we examined how the brains of intermediate-ranked mice in hierarchies respond to dominant and subordinate stimuli by labeling activity-induced immediate early genes and neuronal markers.

View Article and Find Full Text PDF

Multimodal transcriptomics reveal neurogenic aging trajectories and age-related regional inflammation in the dentate gyrus.

Nat Neurosci

January 2025

Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland.

The mammalian dentate gyrus (DG) is involved in certain forms of learning and memory, and DG dysfunction has been implicated in age-related diseases. Although neurogenic potential is maintained throughout life in the DG as neural stem cells (NSCs) continue to generate new neurons, neurogenesis decreases with advancing age, with implications for age-related cognitive decline and disease. In this study, we used single-cell RNA sequencing to characterize transcriptomic signatures of neurogenic cells and their surrounding DG niche, identifying molecular changes associated with neurogenic aging from the activation of quiescent NSCs to the maturation of fate-committed progeny.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!