Cytokine-driven inflammation underlies the pathobiology of a wide array of infectious and immune-related disorders. The TNFR-associated factor (TRAF) proteins have a vital role in innate immunity by conveying signals from cell surface receptors to elicit transcriptional activation of genes encoding proinflammatory cytokines. We discovered that a ubiquitin E3 ligase F box component, termed Fbxo3, potently stimulates cytokine secretion from human inflammatory cells by mediating the degradation of the TRAF inhibitory protein, Fbxl2. Analysis of the Fbxo3 C-terminal structure revealed that the bacterial-like ApaG molecular signature was indispensible for mediating Fbxl2 disposal and stimulating cytokine secretion. By targeting this ApaG motif, we developed a highly unique, selective genus of small-molecule Fbxo3 inhibitors that by reducing TRAF protein levels, potently inhibited cytokine release from human blood mononuclear cells. The Fbxo3 inhibitors effectively lessened the severity of viral pneumonia, septic shock, colitis, and cytokine-driven inflammation systemically in murine models. Thus, pharmacological targeting of Fbxo3 might be a promising strategy for immune-related disorders characterized by a heightened host inflammatory response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845358 | PMC |
http://dx.doi.org/10.4049/jimmunol.1300456 | DOI Listing |
J Diabetes Metab Disord
June 2025
Department of Physiology, Kampala International University, Western Campus, Ishaka, Uganda.
Purpose: Diabetes mellitus is a global health challenge that leads to severe complications, negatively impacting overall health, life expectancy, and quality of life. Herbal medicines, valued for their accessibility and therapeutic benefits with minimal side effects, have been promoted as potential treatments. Managing conditions like diabetes, characterized by free radical production and cytokine-driven inflammation, is vital due to the active components in plants that exert direct pharmacological effects.
View Article and Find Full Text PDFNeurobiol Dis
October 2024
Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China. Electronic address:
Background: Spontaneous intracerebral hemorrhage (ICH) is associated with alarmingly high rates of disability and mortality, and current therapeutic options are suboptimal. A critical component of ICH pathology is the initiation of a robust inflammatory response, often termed "cytokine storm," which amplifies the secondary brain injury following the initial hemorrhagic insult. The precise sources and consequences of this cytokine-driven inflammation are not fully elucidated, necessitating further investigation.
View Article and Find Full Text PDFFront Immunol
July 2024
Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
The Suppressor of Cytokine Signaling (SOCS) family proteins are important negative regulators of cytokine signaling. SOCS1 is the prototypical member of the SOCS family and functions in a classic negative-feedback loop to inhibit signaling in response to interferon, interleukin-12 and interleukin-2 family cytokines. These cytokines have a critical role in orchestrating our immune defence against viral pathogens and cancer.
View Article and Find Full Text PDFFront Immunol
May 2024
Global Medical Affairs, Sanofi, Bridgewater, NJ, United States.
Chronic rhinosinusitis with nasal polyps (CRSwNP) is predominantly a type 2 inflammatory disease associated with type 2 (T2) cell responses and epithelial barrier, mucociliary, and olfactory dysfunction. The inflammatory cytokines interleukin (IL)-4, IL-13, and IL-5 are key mediators driving and perpetuating type 2 inflammation. The inflammatory responses driven by these cytokines include the recruitment and activation of eosinophils, basophils, mast cells, goblet cells, M2 macrophages, and B cells.
View Article and Find Full Text PDFInt J Mol Sci
December 2023
Department of Medicine, Division of Hematology and Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
Immune checkpoint inhibitors (ICI) revolutionized cancer therapy by augmenting anti-tumor immunity via cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death-1/programmed death-ligand 1 (PD-1/PD-L1). However, this breakthrough is accompanied by immune-related adverse effects (irAEs), including renal complications. ICI-related nephritis involves complex mechanisms like auto-reactive T cells, auto-antibodies, reactivation of drug-specific T cells, and cytokine-driven inflammation culminating in AKI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!