In normal-hearing listeners, localization of auditory speech involves stimulus processing in the postero-dorsal pathway of the auditory system. In quiet environments, bilateral cochlear implant (CI) users show high speech recognition performance, but localization of auditory speech is poor, especially when discriminating stimuli from the same hemifield. Whether this difficulty relates to the inability of the auditory system to translate binaural electrical cues into neural signals, or to a functional reorganization of auditory cortical pathways following long periods of binaural deprivation is unknown. In this electroencephalography study, we examined the processing of auditory syllables in postlingually deaf adults with bilateral CIs and in normal-hearing adults. Participants were instructed to either recognize ("recognition" task) or localize ("localization" task) the syllables. The analysis focused on event-related potentials and oscillatory brain responses. N1 amplitudes in CI users were larger in the localization compared with recognition task, suggesting an enhanced stimulus processing effort in the localization task. Linear beamforming of oscillatory activity in CI users revealed stronger suppression of beta-band activity after 200 ms in the postero-dorsal auditory pathway for the localization compared with the recognition task. In normal-hearing adults, effects for longer latency event-related potentials were found, but no effects were observed for N1 amplitudes or beta-band responses. Our study suggests that difficulties in speech localization in bilateral CI users are not reflected in a functional reorganization of cortical auditory pathways. New signal processing strategies of cochlear devices preserving unambiguous binaural cues may improve auditory localization performance in bilateral CI users.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868941 | PMC |
http://dx.doi.org/10.1002/hbm.22388 | DOI Listing |
Prior research has indicated musicians show an auditory processing advantage in phonemic processing of language. The aim of the current study was to elucidate when in the auditory cortical processing stream this advantage emerges in a cocktail-party-like environment. Participants (n = 34) were aged 18-35 years and deemed to be either a musician (10+-year experience) or nonmusician (no formal training).
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Department of Biology, University of Aarhus, Aarhus, 8000, Denmark.
Gransier and Kastelein [J. Acoust. Soc.
View Article and Find Full Text PDFClin Linguist Phon
January 2025
École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Québec, Canada.
This article presents the Quebec French adaptation of the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V), a standardised protocol for evaluating voice quality. Developed through collaboration within the Quebec Voice Speech-Language Pathologist (SLP) Community of Practice, the adapted tool addresses linguistic and cultural nuances specific to Quebec French. This adaptation ensures standardised assessments and harmonises clinical and research practices across the province.
View Article and Find Full Text PDFGiven the same external input, one's understanding of that input can differ based on internal contextual knowledge. Where and how does the brain represent latent belief frameworks that interact with incoming sensory information to shape subjective interpretations? In this study, participants listened to the same auditory narrative twice, with a plot twist in the middle that dramatically shifted their interpretations of the story. Using a robust within-subject whole-brain approach, we leveraged shifts in neural activity between the two listens to identify where latent interpretations are represented in the brain.
View Article and Find Full Text PDFGamma oscillations are disrupted in various neurological disorders, including Alzheimer's disease (AD). In AD mouse models, non-invasive audiovisual stimulation (AuViS) at 40 Hz enhances gamma oscillations, clears amyloid-beta, and improves cognition. We investigated mechanisms of circuit remodeling underlying these restorative effects by leveraging the sensitivity of hippocampal neurogenesis to activity in middle-aged wild-type mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!