Visual and auditory cues are important facilitators of user engagement in virtual environments and video games. Prior research supports the notion that our perception of visual fidelity (quality) is influenced by auditory stimuli. Understanding exactly how our perception of visual fidelity changes in the presence of multimodal stimuli can potentially impact the design of virtual environments, thus creating more engaging virtual worlds and scenarios. Stereoscopic 3-D display technology provides the users with additional visual information (depth into and out of the screen plane). There have been relatively few studies that have investigated the impact that auditory stimuli have on our perception of visual fidelity in the presence of stereoscopic 3-D. Building on previous work, we examine the effect of auditory stimuli on our perception of visual fidelity within a stereoscopic 3-D environment.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2013.2269712DOI Listing

Publication Analysis

Top Keywords

visual fidelity
20
stereoscopic 3-d
16
perception visual
16
auditory stimuli
12
virtual environments
8
stimuli perception
8
visual
6
fidelity
5
perception
5
sound visual
4

Similar Publications

Purpose: Fluorescence in situ hybridization (FISH) plays a critical role in cancer screening but faces challenges in signal clarity and manual intervention. This study aims to enhance FISH signal clarity, improve screening efficiency, and reduce false negatives through an automated image acquisition and signal enhancement framework.

Methods: An automated workflow was developed, integrating a dynamic signal enhancement method that optimizes global and local features.

View Article and Find Full Text PDF

The objective of this study is to explore innovative integration within the field of anatomy education by leveraging HoloLens 2 Augmented Reality Head-Mounted Display (AR HMD) technology and real-time cloud rendering. Initial 3D datasets, comprising extensive anatomical information for each bone, were obtained through the 3D scanning of a full-body cadaver of Korean male origin. Subsequently, these datasets underwent refinement processes aimed at enhancing visual fidelity and optimizing polygon counts, utilizing Blender software.

View Article and Find Full Text PDF

Achieving immersive virtual reality (VR) experiences typically requires extensive computational resources to ensure highdefinition visuals, high frame rates, and low latency in stereoscopic rendering. This challenge is particularly pronounced for lower-tier and standalone VR devices with limited processing power. To accelerate rendering, existing supersampling and image reprojection techniques have shown significant potential, yet to date, no previous work has explored their combination to minimize stereo rendering overhead.

View Article and Find Full Text PDF

Real camera footage is subject to noise, motion blur (MB) and depth of field (DoF). In some applications these might be considered distortions to be removed, but in others it is important to model them because it would be ineffective, or interfere with an aesthetic choice, to simply remove them. In augmented reality applications where virtual content is composed into a live video feed, we can model noise, MB and DoF to make the virtual content visually consistent with the video.

View Article and Find Full Text PDF

Decades of macaque research established the importance of prefrontal cortex for working memory. Surprisingly, recent human neuroimaging studies demonstrated that the contents of working memory can be decoded from primary visual cortex (V1). However the necessity of this mnemonic information remains unknown and contentious.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!